Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(9): 3598-3603, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35451844

RESUMO

Spin spirals (SS) are a special case of noncollinear magnetism, where the magnetic-moment direction rotates along an axis. They have generated interest for novel phenomena, spintronics applications, and their potential formation in monolayers, but the search for monolayers exhibiting SS has not been particularly fruitful. Here, we employ density functional theory calculations to demonstrate that SS form in a recently synthesized monolayer, FeOCl. The SS wavelength and stability can be tuned by doping and uniaxial strain. The SS-state band gap is larger by 0.6 eV compared to the gap of both the ferromagnetic and antiferromagnetic state, enabling bandgap tuning and possibly an unusual formation of quantum wells in a single material via magnetic-field manipulation. The SS-induced out-of-plane ferroelectricity enables switching of the SS chirality by an electric field. Finally, forming heterostructures, for example, with graphene or boron nitride, maintains SS ordering and provides another method of modulation and a potential for magnetoelectric devices.

2.
ACS Nano ; 16(2): 2452-2460, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35129970

RESUMO

Antiferroelectric (AFE) materials, in which alternating dipole moments cancel out to a zero net macroscopic polarization, can be used for high-density energy storage and memory applications. The AFE phase can exist in bulk CuInP2Se6, CuBiP2S6, and a few other transition-metal thiophosphates below 200 K. The required low temperature poses challenges for practical applications. In this work, we report the coexistence of ferrielectric (FE) states and a stable surface phase that does not show piezoelectric response ("zero-response phase") in bulk CuInP2S6 at room temperature. Using piezoresponse force microscopy (PFM) tomographic imaging together with density functional theory, we find that direct and alternating voltages can locally and stably convert FE to zero-response phases and vice versa. While PFM loops show pinched hystereses reminiscent of antiferroelectricity, PFM tomography reveals that the zero-response areas form only on top of the FE phase in which the polarization vector is pointing up. Theoretical calculations suggest that the zero-response phase may correspond to AFE ordering where stacked CuInP2S6 layers have alternating polarization orientations thereby leading to a net-zero polarization. Consistent with experimental findings, theory predicts that the FE polarization pointing down is robust up to the top surface, whereas FE polarization pointing up energetically favors the formation of an AFE surface layer, whose thickness is likely to be sensitive to local strains. AFE order is likely to be more robust against detrimental size effects than polar order, therefore providing additional opportunities to create multifunctional heterostructures with 2D electronic materials.

3.
Nature ; 601(7894): 556-561, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082421

RESUMO

As the length scales of materials decrease, the heterogeneities associated with interfaces become almost as important as the surrounding materials. This has led to extensive studies of emergent electronic and magnetic interface properties in superlattices1-9. However, the interfacial vibrations that affect the phonon-mediated properties, such as thermal conductivity10,11, are measured using macroscopic techniques that lack spatial resolution. Although it is accepted that intrinsic phonons change near boundaries12,13, the physical mechanisms and length scales through which interfacial effects influence materials remain unclear. Here we demonstrate the localized vibrational response of interfaces in strontium titanate-calcium titanate superlattices by combining advanced scanning transmission electron microscopy imaging and spectroscopy, density functional theory calculations and ultrafast optical spectroscopy. Structurally diffuse interfaces that bridge the bounding materials are observed and this local structure creates phonon modes that determine the global response of the superlattice once the spacing of the interfaces approaches the phonon spatial extent. Our results provide direct visualization of the progression of the local atomic structure and interface vibrations as they come to determine the vibrational response of an entire superlattice. Direct observation of such local atomic and vibrational phenomena demonstrates that their spatial extent needs to be quantified to understand macroscopic behaviour. Tailoring interfaces, and knowing their local vibrational response, provides a means of pursuing designer solids with emergent infrared and thermal responses.

4.
ACS Appl Mater Interfaces ; 14(2): 3018-3026, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34985251

RESUMO

The van der Waals layered material CuInP2S6 features interesting functional behavior, including the existence of four uniaxial polarization states, polarization reversal against the electric field through Cu ion migration, a negative-capacitance regime, and reversible extraction of Cu ions. At the heart of these characteristics lies the high mobility of Cu ions, which also determines the spontaneous polarization. Therefore, Cu migration across the lattice results in unusual ferroelectric behavior. Here, we demonstrate how the interplay of polar and ionic properties provides a path to ionically controlled ferroelectric behavior, achieved by applying selected DC voltage pulses and subsequently probing ferroelectric switching during fast triangular voltage sweeps. Using current measurements and theoretical calculations, we observe that increasing DC pulse duration results in higher ionic currents, the buildup of an internal electric field that shifts polarization loops, and an increase in total switchable polarization by ∼50% due to the existence of a high polarization phase which is stabilized by the internal electric field. Apart from tuning ferroelectric behavior by selected square pulses, hysteretic polarization switching can even be entirely deactivated and reactivated, resulting in three-state systems where polarization switching is either inhibited or can be performed in two different directions.

5.
Small ; 18(4): e2102687, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34846103

RESUMO

Since the advent of graphene ushered the era of 2D materials, many forms of hydrogenated graphene have been reported, exhibiting diverse properties ranging from a tunable bandgap to ferromagnetic ordering. Patterned hydrogenated graphene with micron-scale patterns has been fabricated by lithographic means. Here, successful millimeter-scale synthesis of an intrinsically honeycomb-patterned form of hydrogenated graphene on Ru(0001) by epitaxial growth followed by hydrogenation is reported. Combining scanning tunneling microscopy observations with density-functional-theory (DFT) calculations, it is revealed that an atomic-hydrogen layer intercalates between graphene and Ru(0001). The result is a hydrogen honeycomb structure that serves as a template for the final hydrogenation, which converts the graphene into graphane only over the template, yielding honeycomb-patterned hydrogenated graphene (HPHG). In effect, HPHG is a form of patterned graphane. DFT calculations find that the unhydrogenated graphene regions embedded in the patterned graphane exhibit spin-polarized edge states. This type of growth mechanism provides a new pathway for the fabrication of intrinsically patterned graphene-based materials.

6.
iScience ; 24(12): 103456, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34888499

RESUMO

Point defects in 1T″ anisotropic ReSe2 offer many possibilities for defect engineering, which could endow this two-dimensional semiconductor with new functionalities, but have so far received limited attention. Here, we systematically investigate a full spectrum of point defects in ReSe2, including vacancies (VSe1-4), isoelectronic substitutions (OSe1-4 and SSe1-4), and antisite defects (SeRe1-2 and ReSe1-4), by atomic-scale electron microscopy imaging and density functional theory (DFT) calculations. Statistical counting reveals a diverse density of various point defects, which are further elaborated by the formation energy calculations. Se vacancy dynamics was unraveled by in-situ electron beam irradiation. DFT calculations reveal that vacancies at Se sites notably introduce in-gap states, which are largely quenched upon isoelectronic substitutions (O and S), whereas antisite defects introduce localized magnetic moments. These results provide atomic-scale insight of atomic defects in 1T″-ReSe2, paving the way for tuning the electronic structure of anisotropic ReSe2 via defect engineering.

7.
Nat Nanotechnol ; 16(8): 882-887, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33941919

RESUMO

The development of high-performance memory devices has played a key role in the innovation of modern electronics. Non-volatile memory devices have manifested high capacity and mechanical reliability as a mainstream technology; however, their performance has been hampered by low extinction ratio and slow operational speed. Despite substantial efforts to improve these characteristics, typical write times of hundreds of micro- or milliseconds remain a few orders of magnitude longer than that of their volatile counterparts. Here we demonstrate non-volatile, floating-gate memory devices based on van der Waals heterostructures with atomically sharp interfaces between different functional elements, achieving ultrahigh-speed programming/erasing operations in the range of nanoseconds with extinction ratio up to 1010. This enhanced performance enables new device capabilities such as multi-bit storage, thus opening up applications in the realm of modern nanoelectronics and offering future fabrication guidelines for device scale up.

8.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827817

RESUMO

Electrides are an unusual family of materials that feature loosely bonded electrons that occupy special interstitial sites and serve as anions. They are attracting increasing attention because of their wide range of exotic physical and chemical properties. Despite the critical role of the anionic electrons in inducing these properties, their presence has not been directly observed experimentally. Here, we visualize the columnar anionic electron density within the prototype electride Y5Si3 with sub-angstrom spatial resolution using differential phase-contrast imaging in a scanning transmission electron microscope. The data further reveal an unexpected charge variation at different anionic sites. Density functional theory simulations show that the presence of trace H impurities is the cause of this inhomogeneity. The visualization and quantification of charge inhomogeneities in crystals will serve as valuable input in future theoretical predictions and experimental analysis of exotic properties in electrides and materials beyond.

9.
Artigo em Inglês | MEDLINE | ID: mdl-32746203

RESUMO

The dependence of electromechanical behavior on strain in ferroelectric materials can be leveraged as parameter to tune ferroelectric properties such as the Curie temperature. For van der Waals materials, a unique opportunity arises because of wrinkling, bubbling, and Moiré phenomena accessible due to structural properties inherent to the van der Waals gap. Here, we use piezoresponse force microscopy and unsupervised machine learning methods to gain insight into the ferroelectric properties of layered CuInP2S6 where local areas are strained in-plane due to a partial delamination, resulting in a topographic bubble feature. We observe significant differences between strained and unstrained areas in piezoresponse images as well as voltage spectroscopy, during which strained areas show a sigmoid-shaped response usually associated with the response measured around the Curie temperature, indicating a lowering of the Curie temperature under tensile strain. These results suggest that strain engineering might be used to further increase the functionality of CuInP2S6 through locally modifying ferroelectric properties on the micro- and nanoscale.

10.
Nano Lett ; 20(12): 8584-8591, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33200603

RESUMO

Graphene on SiO2 enables fabrication of Si-technology-compatible devices, but a transfer of these devices from other substrates and direct growth have severe limitations due to a relatively small grain size or device-contamination. Here, we show an efficient, transfer-free way to integrate centimeter-scale, single-crystal graphene, of a quality suitable for electronic devices, on an insulating SiO2 film. Starting with single-crystal graphene grown epitaxially on Ru(0001), a SiO2 film is grown under the graphene by stepwise intercalation of silicon and oxygen. Thin (∼1 nm) crystalline or thicker (∼2 nm) amorphous SiO2 has been produced. The insulating nature of the thick amorphous SiO2 is verified by transport measurements. The device-quality of the corresponding graphene was confirmed by the observation of Shubnikov-de Haas oscillations, an integer quantum Hall effect, and a weak antilocalization effect within in situ fabricated Hall bar devices. This work provides a reliable platform for applications of large-scale, high-quality graphene in electronics.

11.
Nano Lett ; 20(9): 6666-6673, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32822183

RESUMO

Indium selenide (InSe) has a high electron mobility and tunable direct band gap, enabling its potential applications to electronic and optoelectronic devices. Here, we report the fabrication of InSe photodetectors with high on/off ratios and ultrahigh photoresponsivity, using ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films as the top-gate dielectric. Benefiting from the successful suppression of the dark current down to ∼10-14A in the InSe channel by tuning the three different polarization states in ferroelectric P(VDF-TrFE) and improved interface properties using h-BN as a substrate, the ferroelectric-gated InSe photodetectors show a high on/off ratio of over 108, a high photoresponsivity up to 14 250 AW-1, a high detectivity up to 1.63 × 1013 Jones, and a fast response time of 600 µs even at zero-gate voltage. The present results highlight the role of ferroelectric P(VDF-TrFE) in tuning the carrier transport of InSe and may provide an avenue for the development of InSe-based photodetectors.

12.
ACS Appl Mater Interfaces ; 12(34): 38546-38553, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32805973

RESUMO

CuInP2S6 (CIPS) is a van der Waals material that has attracted attention because of its unusual properties. Recently, a combination of density functional theory (DFT) calculations and piezoresponse force microscopy (PFM) showed that CIPS is a uniaxial quadruple-well ferrielectric featuring two polar phases and a total of four polarization states that can be controlled by external strain. Here, we combine DFT and PFM to investigate the stress-dependent piezoelectric properties of CIPS, which have so far remained unexplored. The two different polarization phases are predicted to differ in their mechanical properties and the stress sensitivity of their piezoelectric constants. This knowledge is applied to the interpretation of ferroelectric domain images, which enables investigation of local strain and stress distributions. The interplay of theory and experiment produces polarization maps and layer spacings which we compare to macroscopic X-ray measurements. We found that the sample contains only the low-polarization phase and that domains of one polarization orientation are strained, whereas domains of the opposite polarization direction are fully relaxed. The described nanoscale imaging methodology is applicable to any material for which the relationship between electromechanical and mechanical characteristics is known, providing insight on structural, mechanical, and electromechanical properties down to ∼10 nm length scales.

13.
Nat Commun ; 11(1): 3623, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681040

RESUMO

Polar van der Waals chalcogenophosphates exhibit unique properties, such as negative electrostriction and multi-well ferrielectricity, and enable combining dielectric and 2D electronic materials. Using low temperature piezoresponse force microscopy, we revealed coexistence of piezoelectric and non-piezoelectric phases in CuInP2Se6, forming unusual domain walls with enhanced piezoelectric response. From systematic imaging experiments we have inferred the formation of a partially polarized antiferroelectric state, with inclusions of structurally distinct ferrielectric domains enclosed by the corresponding phase boundaries. The assignment is strongly supported by optical spectroscopies and density-functional-theory calculations. Enhanced piezoresponse at the ferrielectric/antiferroelectric phase boundary and the ability to manipulate this entity with electric field on the nanoscale expand the existing phenomenology of functional domain walls. At the same time, phase-coexistence in chalcogenophosphates may lead to rational strategies for incorporation of ferroic functionality into van der Waals heterostructures, with stronger resilience toward detrimental size-effects.

14.
Nanoscale Horiz ; 5(9): 1303-1308, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613986

RESUMO

Ferroelectric (FE) thin films have been investigated for many years due to their broad applications in electronic devices. It was recently demonstrated that FE functionality persists in ultrathin films, possibly even in monolayers of two-dimensional (2D) FEs. However, the feasibility of 2D-based FE functional devices remains an open challenge. Here, we employ density-functional-theory calculations to propose and document the possible integration of graphene with 2D FE materials on metal substrates in the form of functional FE devices. We show that monolayers of proposed M2O3 (M = Al, Y) in the quintuple layer (QL) In2Se3 structure are stable 2D FE materials and that QL-M2O3 is a functional tunnel barrier in a graphene/QL-M2O3/Ru heterostructure. The QL-M2O3 barrier width can be modulated by its polarization direction, whereby the heterostructure can function as a prototype ferroelectric tunnel junction. Moreover, alternating the polarization of QL-M2O3 modulates the doping type of graphene, enabling the fabrication of graphene p-n junctions. By design, the proposed heterostructures can in principle be fabricated by intercalation, which is known to produce high-quality, large-scale 2D-based heterostructures.

15.
Nanoscale ; 12(22): 12038-12045, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32469037

RESUMO

A graphene wrinkle is a quasi-one-dimensional structure and can alter the intrinsic physical and chemical activity, modify the band structure and introduce transport anisotropy in graphene thin films. However, the quasi-one-dimensional electrical transport contribution of wrinkles to the whole graphene films compared to that of the two-dimensional flat graphene nearby has still been elusive. Here, we report measurements of relatively high conductivity in micrometer-wide graphene wrinkles on SiO2/Si substrates using an ultrahigh vacuum (UHV) four-probe scanning tunneling microscope. Combining the experimental results with resistor network simulations, the wrinkle conductivity at the charge neutrality point shows a much higher conductivity up to ∼33.6 times compared to that of the flat monolayer region. The high conductivity can be attributed not only to the wrinkled multilayer structure but also to the large strain gradients located mainly in the boundary area. This method can also be extended to evaluate the electrical-transport properties of wrinkled structures in other two-dimensional materials.

16.
Adv Mater ; 32(19): e1908314, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32239583

RESUMO

Materials possessing structural phase transformations exhibit a rich set of physical and chemical properties that can be used for a variety of applications. In 2D materials, structural transformations have so far been induced by strain, lasers, electron injection, electron/ion beams, thermal loss of stoichiometry, and chemical treatments or by a combination of such approaches and annealing. However, stoichiometry-preserving, purely thermal, reversible phase transitions, which are fundamental in physics and can be easily induced, have not been observed. Here, the fabrication of monolayer Cu2 Se, a new 2D material is reported, demonstrating the existence of a purely thermal structural phase transition. Scanning tunneling microscopy, scanning transmission electron microscopy, and density functional theory (DFT) identify two structural phases at 78 and 300 K. DFT calculations trace the phase-transition mechanism via the existence/absence of imaginary (unstable) phonon modes at low and high temperatures. In situ, variable-temperature low-energy electron diffraction patterns demonstrate that the phase transition occurs across the whole sample at ≈147 K. Angle-resolved photoemission spectra and DFT calculations show that a degeneracy at the Γ point of the energy bands of the high-temperature phase is lifted in the low-temperature phase. This work opens up possibilities for studying such phase transitions in 2D materials.

17.
Nano Lett ; 20(4): 2674-2680, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32125162

RESUMO

Opening a band gap in bilayer graphene (BLG) is of significance for potential applications in graphene-based electronic and photonic devices. Here, we report the generation of a sizable band gap in BLG by intercalating silicene between BLG and Ru substrate. We first grow high-quality Bernal-stacked BLG on Ru(0001) and then intercalate silicene to the interface between the BLG and Ru, which is confirmed by low-energy electron diffraction and scanning tunneling microscopy. Raman spectroscopy shows that the G and 2D peaks of the intercalated BLG are restored to the freestanding-BLG features. Angle-resolved photoelectron spectroscopy measurements show that a band gap of about 0.2 eV opens in the BLG. Density functional theory calculations indicate that the large-gap opening results from a cooperative contribution of the doping and rippling/strain in the BLG. This work provides insightful understanding on the mechanism of band gap opening in BLG and enhances the potential of graphene-based device development.

18.
Adv Mater ; 32(11): e1906536, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32027430

RESUMO

Internal magnetic moments induced by magnetic dopants in MoS2 monolayers are shown to serve as a new means to engineer valley Zeeman splitting (VZS). Specifically, successful synthesis of monolayer MoS2 doped with the magnetic element Co is reported, and the magnitude of the valley splitting is engineered by manipulating the dopant concentration. Valley splittings of 3.9, 5.2, and 6.15 meV at 7 T in Co-doped MoS2 with Co concentrations of 0.8%, 1.7%, and 2.5%, respectively, are achieved as revealed by polarization-resolved photoluminescence (PL) spectroscopy. Atomic-resolution electron microscopy studies clearly identify the magnetic sites of Co substitution in the MoS2 lattice, forming two distinct types of configurations, namely isolated single dopants and tridopant clusters. Density functional theory (DFT) and model calculations reveal that the observed enhanced VZS arises from an internal magnetic field induced by the tridopant clusters, which couples to the spin, atomic orbital, and valley magnetic moment of carriers from the conduction and valence bands. The present study demonstrates a new method to control the valley pseudospin via magnetic dopants in layered semiconducting materials, paving the way toward magneto-optical and spintronic devices.

19.
J Phys Chem Lett ; 11(4): 1536-1541, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32011142

RESUMO

Hydrogen atoms bonded within molecular cavities often undergo tunneling or thermal-transfer processes that play major roles in diverse physical phenomena. Such transfers may or may not entail intermediate states. The existence of such fleeting states is typically determined by indirect means, while their direct visualization has not been achieved, largely because their concentrations under equilibrium conditions are negligible. Here we use density-functional-theory calculations and scanning-tunneling-microscopy (STM) image simulations to predict that, under specially designed nonequilibrium conditions of voltage-enhanced high transfer rates, the cis-intermediate of the two-hydrogen transfer process in metal-free naphthalocyanine molecules adsorbed on Ag(111) surfaces would be visualizable in a composite image of double-C morphology. As guided by the theoretical predictions, at adjusted scanning temperature and bias, STM experiments achieve a direct visualization of the cis-intermediate. This work demonstrates a practical way to directly visualize elusive intermediates, which enhances understanding of the quantum dynamics of hydrogen atoms.

20.
Adv Sci (Weinh) ; 7(2): 1901279, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993281

RESUMO

Industrial applications of Pt-based oxygen-reduction-reaction (ORR) catalysts are limited by high cost and low stability. Here, facile large-scale synthesis of sub-3-nm ordered Pt3In clusters on commercial carbon black as ORR catalyst that alleviates both these shortcomings is reported. As-prepared Pt3In/C exhibits a mass activity of 0.71 mA mg-1 and a specific area activity of 0.91 mA cm-2 at 0.9 V vs reversible hydrogen electrode, which are 4.1 and 2.7 times the corresponding values of commercial Pt/C catalysts. The as-prepared ordered Pt3In/C catalyst is also remarkably stable with negligible activity and structural decay after 20 000 accelerated electrochemical durability cycles, due to its ordered structure. Density-functional-theory calculations demonstrate that ordered-Pt3In is more energetically favorable for ORR than the commercial Pt/C catalysts because ∆G O is closer to the peak of the volcano plot after ordered incorporation of indium atoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...