Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Indian Heart J ; 71(3): 184-198, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543191

RESUMO

Malignant coronary artery disease (CAD) refers to a severe and extensive atherosclerotic process involving multiple coronary arteries in young individuals (aged <45 years in men and <50 years in women) with a low or no burden of established risk factors. Indians, in general, develop acute myocardial infarction (AMI) about 10 years earlier; AMI rates are threefold to fivefold higher in young Indians than in other populations. Although established CAD risk factors have a predictive value, they do not fully account for the excessive burden of CAD in young Indians. Lipoprotein(a) (Lp(a)) is increasingly recognized as the strongest known genetic risk factor for premature CAD, with high levels observed in Indians with malignant CAD. High Lp(a) levels confer a twofold to threefold risk of CAD-a risk similar to that of established risk factors, including diabetes. South Asians have the second highest Lp(a) levels and the highest risk of AMI from the elevated levels, more than double the risk observed in people of European descent. Approximately 25% of Indians and other South Asians have elevated Lp(a) levels (≥50 mg/dl), rendering Lp(a) a risk factor of great importance, similar to or surpassing diabetes. Lp(a) measurement is ready for clinical use and should be an essential part of all CAD research in Indians.

2.
Curr Opin Cardiol ; 34(6): 706-713, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31436558

RESUMO

PURPOSE OF REVIEW: This review is a comprehensive update on recent discoveries on the genetics of early-onset coronary artery disease (EOCAD), and how those findings can be translated to advance its medical management. RECENT FINDINGS: To date, a total of 266 common variants of modest effect size have been reported to be associated with CAD, but many still warrant functional studies. Rare variants impacting the function of at least 10 genes are now well characterized in Mendelian EOCAD. Estimations of minor allele frequencies in multiple ancestries from large genetic databases have allowed us to estimate the prevalence of Mendelian forms of EOCAD. In fact, the prevalence of Mendelian mutations varies markedly between ancestries, ranging from 1 : 289 to 1 : 153 for familial hypercholesterolemia. Mendelian forms of EOCAD support three major biological pathways, including lipid metabolism, vascular wall integrity and function, and thrombosis. Furthermore, combining common variants of modest effect into polygenic risk scores (PRS) has shown to be effective at identifying individuals at high risk of CAD. SUMMARY: Mendelian forms of EOCAD highlight the importance of lipid metabolism, yet prevalence in many non-European populations remains to be clarified. Polygenic EOCAD affects more individuals and, in many cases, confers a higher risk of EOCAD than rare Mendelian mutations. Thus, sequencing of target genes and the derivation of PRSs can be used to identify high-risk patients, leading to more personalized therapeutic approaches.

3.
J Med Genet ; 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391289

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are novel therapeutics for reducing low-density lipoprotein cholesterol (LDLc). While serious side-effects have not been observed in short-term clinical trials, there remain concerns that long-term PCSK9 inhibition may cause neurocognitive side-effects. METHODS AND RESULTS: An adult male with childhood-onset global developmental delay, cerebellar atrophy and severe hypolipidaemia underwent extensive biochemical and genetic investigations. Initial testing revealed low circulating PCSK9 levels and a common loss-of-function PCSK9 polymorphism, but these findings did not fully account for severe hypolipidaemia. Whole-exome sequencing was subsequently performed and identified two pathogenic phosphomannose mutase 2 (PMM2) variants (p.Arg141His and p.Pro69Ser) known to cause PMM2-associated congenital disorder of glycosylation (PMM2-CDG). A diagnosis of PMM2-CDG was consistent with the proband's neurological symptoms and severe hypolipidaemia. Given that PMM2-CDG is characterised by defective protein N-glycosylation and that PCSK9 is a negative regulator of LDLc, we postulated that loss of PCSK9 N-glycosylation mediates hypolipidaemia among patients with PMM2-CDG. First, in an independent cohort of patients with PMM2-CDG (N=8), we verified that circulating PCSK9 levels were significantly lower in patients than controls (p=0.0006). Second, we conducted in vitro experiments in hepatocyte-derived cells to evaluate the effects of PCSK9 N-glycosylation loss on LDL receptor (LDLR) activity. Experimental results suggest that defective PCSK9 N-glycosylation reduces the ability of circulating PCSK9 to degrade LDLR. CONCLUSION: Life-long exposure to genetically lower PCSK9 per se is unlikely to cause neurocognitive impairment. Both observational and experimental findings suggest that hypolipidaemia in PMM2-CDG may be partially mediated by loss of PCSK9 N-glycosylation and/or its regulators.

4.
Genet Epidemiol ; 43(7): 815-830, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31332826

RESUMO

Genotype-stratified variance of a quantitative trait could differ in the presence of gene-gene or gene-environment interactions. Genetic markers associated with phenotypic variance are thus considered promising candidates for follow-up interaction or joint location-scale analyses. However, as in studies of main effects, the X-chromosome is routinely excluded from "whole-genome" scans due to analytical challenges. Specifically, as males carry only one copy of the X-chromosome, the inherent sex-genotype dependency could bias the trait-genotype association, through sexual dimorphism in quantitative traits with sex-specific means or variances. Here we investigate phenotypic variance heterogeneity associated with X-chromosome single nucleotide polymorphisms (SNPs) and propose valid and powerful strategies. Among those, a generalized Levene's test has adequate power and remains robust to sexual dimorphism. An alternative approach is a sex-stratified analysis but at the cost of slightly reduced power and modeling flexibility. We applied both methods to an Estonian study of gene expression quantitative trait loci (eQTL; n = 841), and two complex trait studies of height, hip, and waist circumferences, and body mass index from Multi-Ethnic Study of Atherosclerosis (MESA; n = 2,073) and UK Biobank (UKB; n = 327,393). Consistent with previous eQTL findings on mean, we found some but no conclusive evidence for cis regulators being enriched for variance association. SNP rs2681646 is associated with variance of waist circumference (p = 9.5E-07) at X-chromosome-wide significance in UKB, with a suggestive female-specific effect in MESA (p = 0.048). Collectively, an enrichment analysis using permutated UKB (p < 0.1) and MESA (p < 0.01) datasets, suggests a possible polygenic structure for the variance of human height.

5.
Indian Heart J ; 71(2): 99-112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31280836

RESUMO

Lipoprotein(a) [Lp(a)] is a circulating lipoprotein, and its level is largely determined by variation in the Lp(a) gene (LPA) locus encoding apo(a). Genetic variation in the LPA gene that increases Lp(a) level also increases coronary artery disease (CAD) risk, suggesting that Lp(a) is a causal factor for CAD risk. Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), a proatherogenic and proinflammatory biomarker. Lp(a) adversely affects endothelial function, inflammation, oxidative stress, fibrinolysis, and plaque stability, leading to accelerated atherothrombosis and premature CAD. The INTER-HEART Study has established the usefulness of Lp(a) in assessing the risk of acute myocardial infarction in ethnically diverse populations with South Asians having the highest risk and population attributable risk. The 2018 Cholesterol Clinical Practice Guideline have recognized elevated Lp(a) as an atherosclerotic cardiovascular disease risk enhancer for initiating or intensifying statin therapy.

6.
Circulation ; 140(10): 819-830, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208196

RESUMO

BACKGROUND: Novel, effective, and safe drugs are warranted for treatment of ischemic stroke. Circulating protein biomarkers with causal genetic evidence represent promising drug targets, but no systematic screen of the proteome has been performed. METHODS: First, using Mendelian randomization (MR) analyses, we assessed 653 circulating proteins as possible causal mediators for 3 different subtypes of ischemic stroke: large artery atherosclerosis, cardioembolic stroke, and small artery occlusion. Second, we used MR to assess whether identified biomarkers also affect risk for intracranial bleeding, specifically intracerebral and subarachnoid hemorrhages. Third, we expanded this analysis to 679 diseases to test a broad spectrum of side effects associated with hypothetical therapeutic agents for ischemic stroke that target the identified biomarkers. For all MR analyses, summary-level data from genome-wide association studies (GWAS) were used to ascertain genetic effects on circulating biomarker levels versus disease risk. Biomarker effects were derived by meta-analysis of 5 GWAS (N≤20 509). Disease effects were derived from large GWAS analyses, including MEGASTROKE (N≤322 150) and UK Biobank (N≤408 961) studies. RESULTS: Several biomarkers emerged as causal mediators for ischemic stroke. Causal mediators for cardioembolic stroke included histo-blood group ABO system transferase, coagulation factor XI, scavenger receptor class A5 (SCARA5), and tumor necrosis factor-like weak inducer of apoptosis (TNFSF12). Causal mediators for large artery atherosclerosis included ABO, cluster of differentiation 40, apolipoprotein(a), and matrix metalloproteinase-12. SCARA5 (odds ratio [OR]=0.78; 95% CI, 0.70-0.88; P=1.46×10-5) and TNFSF12 (OR=0.86; 95% CI, 0.81-0.91; P=7.69×10-7) represent novel protective mediators of cardioembolic stroke. TNFSF12 also increased the risk of subarachnoid (OR=1.53; 95% CI, 1.31-1.78; P=3.32×10-8) and intracerebral (OR=1.34; 95% CI, 1.14-1.58; P=4.05×10-4) hemorrhages, whereas SCARA5 decreased the risk of subarachnoid hemorrhage (OR=0.61; 95% CI, 0.47-0.81; P=5.20×10-4). Multiple side effects beyond stroke were identified for 6 of 7 biomarkers, most (75%) of which were beneficial. No adverse side effects were found for coagulation factor XI, apolipoprotein(a), and SCARA5. CONCLUSIONS: Through a systematic MR screen of the circulating proteome, causal roles for 5 established and 2 novel biomarkers for ischemic stroke were identified. Side-effect profiles were characterized to help inform drug target prioritization. In particular, SCARA5 represents a promising target for treatment of cardioembolic stroke, with no predicted adverse side effects.

7.
Diabetes Care ; 42(9): 1800-1808, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31235487

RESUMO

OBJECTIVE: Observations of a metabolically unhealthy normal weight phenotype suggest that a lack of favorable adiposity contributes to an increased risk of type 2 diabetes. We aimed to identify causal blood biomarkers linking favorable adiposity with type 2 diabetes risk for use in cardiometabolic risk assessments. RESEARCH DESIGN AND METHODS: A weighted polygenic risk score (PRS) underpinning metabolically favorable adiposity was validated in the UK Biobank (n = 341,872) and the Outcome Reduction With Initial Glargine Intervention (ORIGIN Trial) (n = 8,197) and tested for association with 238 blood biomarkers. Associated biomarkers were investigated for causation with type 2 diabetes risk using Mendelian randomization and for its performance in predictive models for incident major adverse cardiovascular events (MACE). RESULTS: Of the 238 biomarkers tested, only insulin-like growth factor-binding protein (IGFBP)-3 concentration was associated with the PRS, where a 1 unit increase in PRS predicted a 0.28-SD decrease in IGFBP-3 blood levels (P < 0.05/238). Higher IGFBP-3 levels causally increased type 2 diabetes risk (odds ratio 1.26 per 1 SD genetically determined IGFBP-3 level [95% CI 1.11-1.43]) and predicted a higher incidence of MACE (hazard ratio 1.13 per 1 SD IGFBP-3 concentration [95% CI 1.07-1.20]). Adding IGFBP-3 concentrations to the standard clinical assessment of metabolic health enhanced the prediction of incident MACE, with a net reclassification improvement of 11.5% in normal weight individuals (P = 0.004). CONCLUSIONS: We identified IGFBP-3 as a novel biomarker linking a lack of favorable adiposity with type 2 diabetes risk and a predictive marker for incident cardiovascular events. Using IGFBP-3 blood concentrations may improve the risk assessment of cardiometabolic diseases.

8.
Nat Rev Genet ; 20(8): 467-484, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31068683

RESUMO

Genome-wide association studies (GWAS) involve testing genetic variants across the genomes of many individuals to identify genotype-phenotype associations. GWAS have revolutionized the field of complex disease genetics over the past decade, providing numerous compelling associations for human complex traits and diseases. Despite clear successes in identifying novel disease susceptibility genes and biological pathways and in translating these findings into clinical care, GWAS have not been without controversy. Prominent criticisms include concerns that GWAS will eventually implicate the entire genome in disease predisposition and that most association signals reflect variants and genes with no direct biological relevance to disease. In this Review, we comprehensively assess the benefits and limitations of GWAS in human populations and discuss the relevance of performing more GWAS.

9.
Circulation ; 139(2): 295-298, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30615506
11.
Circulation ; 139(12): 1472-1482, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30667276

RESUMO

BACKGROUND: Lipoprotein(a) [Lp(a)] levels predict the risk of myocardial infarction (MI) in populations of European ancestry; however, few data are available for other ethnic groups. Furthermore, differences in isoform size distribution and the associated Lp(a) concentrations have not fully been characterized between ethnic groups. METHODS: We studied 6086 cases of first MI and 6857 controls from the INTERHEART study that were stratified by ethnicity and adjusted for age and sex. A total of 775 Africans, 4443 Chinese, 1352 Arabs, 1856 Europeans, 1469 Latin Americans, 1829 South Asians, and 1221 Southeast Asians were included in the study. Lp(a) concentration was measured in each participant using an assay that was insensitive to isoform size, with isoform size being assessed by Western blot in a subset of 4219 participants. RESULTS: Variations in Lp(a) concentrations and isoform size distributions were observed between populations, with Africans having the highest Lp(a) concentration (median=27.2 mg/dL) and smallest isoform size (median=24 kringle IV repeats). Chinese samples had the lowest concentration (median=7.8 mg/dL) and largest isoform sizes (median=28). Overall, high Lp(a) concentrations (>50 mg/dL) were associated with an increased risk of MI (odds ratio, 1.48; 95% CI, 1.32-1.67; P<0.001). The association was independent of established MI risk factors, including diabetes mellitus, smoking, high blood pressure, and apolipoprotein B and A ratio. An inverse association was observed between isoform size and Lp(a) concentration, which was consistent across ethnic groups. Larger isoforms tended to be associated with a lower risk of MI, but this relationship was not present after adjustment for concentration. Consistent with variations in Lp(a) concentration across populations, the population-attributable risk of high Lp(a) for MI varied from 0% in Africans to 9.5% in South Asians. CONCLUSIONS: Lp(a) concentration and isoform size varied markedly between ethnic groups. Higher Lp(a) concentrations were associated with an increased risk of MI and carried an especially high population burden in South Asians and Latin Americans. Isoform size was inversely associated with Lp(a) concentration, but did not significantly contribute to risk.

12.
Can J Cardiol ; 34(12): 1553-1563, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30527143

RESUMO

Familial hypercholesterolemia (FH) is the most common monogenic disorder causing premature atherosclerotic cardiovascular disease. It affects 1 in 250 individuals worldwide, and of the approximately 145,000 Canadians estimated to have FH, most are undiagnosed. Herein, we provide an update of the 2014 Canadian Cardiovascular Society position statement on FH addressing the need for case identification, prompt recognition, and treatment with statins and ezetimibe, and cascade family screening. We provide a new Canadian definition for FH and tools for clinicians to make a diagnosis. The risk of atherosclerotic cardiovascular disease in patients with "definite" FH is 10- to 20-fold that of a normolipidemic individual and initiating treatment in youth or young adulthood can normalize life expectancy. Target levels for low-density lipoprotein cholesterol are proposed and are aligned with the Canadian Cardiovascular Society guidelines on dyslipidemia. Recommendation for the use of inhibitors of proprotein convertase kexin/subtilisin type 9 are made in patients who cannot achieve therapeutic low-density lipoprotein cholesterol targets on maximally tolerated statins and ezetimibe. The writing committee used the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology in the preparation of the present document, which offers guidance for practical evaluation and management of patients with FH. This position statement also aims to raise awareness of FH nationally, and to mobilize patient support, promote knowledge translation, and availability of treatment and health care resources for this under-recognized, but important medical condition.


Assuntos
Hiperlipoproteinemia Tipo II , Programas de Rastreamento , Anticolesterolemiantes/uso terapêutico , Valva Aórtica/diagnóstico por imagem , Remoção de Componentes Sanguíneos , Canadá , Artérias Carótidas/diagnóstico por imagem , Contraindicações de Medicamentos , Doença da Artéria Coronariana/etiologia , Doença da Artéria Coronariana/prevenção & controle , Diabetes Mellitus Tipo 2/complicações , Feminino , Testes Genéticos , Comportamentos Relacionados com a Saúde , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Estilo de Vida , Lipídeos/sangue , Gravidez , Prevenção Primária , Sistema de Registros , Medição de Risco , Calcificação Vascular/diagnóstico por imagem
13.
Nat Commun ; 9(1): 4885, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459321

RESUMO

Coffin-Siris and Nicolaides-Baraitser syndromes (CSS and NCBRS) are Mendelian disorders caused by mutations in subunits of the BAF chromatin remodeling complex. We report overlapping peripheral blood DNA methylation epi-signatures in individuals with various subtypes of CSS (ARID1B, SMARCB1, and SMARCA4) and NCBRS (SMARCA2). We demonstrate that the degree of similarity in the epi-signatures of some CSS subtypes and NCBRS can be greater than that within CSS, indicating a link in the functional basis of the two syndromes. We show that chromosome 6q25 microdeletion syndrome, harboring ARID1B deletions, exhibits a similar CSS/NCBRS methylation profile. Specificity of this epi-signature was confirmed across a wide range of neurodevelopmental conditions including other chromatin remodeling and epigenetic machinery disorders. We demonstrate that a machine-learning model trained on this DNA methylation profile can resolve ambiguous clinical cases, reclassify those with variants of unknown significance, and identify previously undiagnosed subjects through targeted population screening.

14.
Clin Chem ; 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337280

RESUMO

BACKGROUND: Identifying markers of chronic kidney disease (CKD) that occur early in the disease process and are specific to loss of kidney function rather than other underlying causes of disease may allow earlier, more accurate identification of patients who will develop CKD. We therefore sought to identify diagnostic blood markers of early CKD that are caused by loss of kidney function by using an innovative "reverse Mendelian randomization" (MR) approach. METHODS: We applied this technique to genetic and biomarker data from 4147 participants in the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial, all with known type 2 diabetes, impaired fasting glucose, or impaired glucose tolerance. Two-sample MR was conducted using variants associated with creatinine-based eGFR (eGFRcrea) from the CKDGen Consortium (n = 133814) to estimate the effect of genetically decreased eGFRcrea on 238 serum biomarkers. RESULTS: With reverse MR, trefoil factor 3 (TFF3) was identified as a protein that is increased owing to decreased eGFRcrea (ß = 1.86 SD per SD decrease eGFRcrea; 95% CI, 0.95-2.76; P = 8.0 × 10-5). Reverse MR findings were consistent with epidemiological associations for incident CKD in ORIGIN (OR = 1.28 per SD increase in TFF3; 95% CI, 1.18-1.38; P = 4.58 × 10-10). Addition of TFF3 significantly improved discrimination for incident CKD relative to eGFRcrea alone (net reclassification improvement = 0.211; P = 9.56 × 10-12) and in models including additional risk factors. CONCLUSIONS: Our results suggest TFF3 is a valuable diagnostic marker for early CKD in dysglycemic populations and acts as a proof of concept for the application of this novel MR technique to identify diagnostic biomarkers for other chronic diseases.

15.
Stroke ; 49(10): 2541-2548, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30355125
16.
Diabetes Care ; 41(11): 2404-2413, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30262460

RESUMO

OBJECTIVE: We evaluated whether the increasing number of genetic loci for coronary artery disease (CAD) identified in the general population could be used to predict the risk of major CAD events (MCE) among participants with type 2 diabetes at high cardiovascular risk. RESEARCH DESIGN AND METHODS: A weighted genetic risk score (GRS) derived from 204 variants representative of all the 160 CAD loci identified in the general population as of December 2017 was calculated in 5,360 and 1,931 white participants in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) and Outcome Reduction With Initial Glargine Intervention (ORIGIN) studies, respectively. The association between GRS and MCE (combining fatal CAD events, nonfatal myocardial infarction, and unstable angina) was assessed by Cox proportional hazards regression. RESULTS: The GRS was associated with MCE risk in both ACCORD and ORIGIN (hazard ratio [HR] per SD 1.27, 95% CI 1.18-1.37, P = 4 × 10-10, and HR per SD 1.35, 95% CI 1.16-1.58, P = 2 × 10-4, respectively). This association was independent from interventions tested in the trials and persisted, though attenuated, after adjustment for classic cardiovascular risk predictors. Adding the GRS to clinical predictors improved incident MCE risk classification (relative integrated discrimination improvement +8%, P = 7 × 10-4). The performance of this GRS was superior to that of GRS based on the smaller number of CAD loci available in previous years. CONCLUSIONS: When combined into a GRS, CAD loci identified in the general population are associated with CAD also in type 2 diabetes. This GRS provides a significant improvement in the ability to correctly predict future MCE, which may increase further with the discovery of new CAD loci.

17.
Genet Epidemiol ; 42(7): 636-647, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30156736

RESUMO

Complex traits can share a substantial proportion of their polygenic heritability. However, genome-wide polygenic correlations between pairs of traits can mask heterogeneity in their shared polygenic effects across loci. We propose a novel method (weighted maximum likelihood-regional polygenic correlation [RPC]) to evaluate polygenic correlation between two complex traits in small genomic regions using summary association statistics. Our method tests for evidence that the polygenic effect at a given region affects two traits concurrently. We show through simulations that our method is well calibrated, powerful, and more robust to misspecification of linkage disequilibrium than other methods under a polygenic model. As small genomic regions are more likely to harbor specific genetic effects, our method is ideal to identify heterogeneity in shared polygenic correlation across regions. We illustrate the usefulness of our method by addressing two questions related to cardiometabolic traits. First, we explored how RPC can inform on the strong epidemiological association between high-density lipoprotein cholesterol and coronary artery disease (CAD), suggesting a key role for triglycerides metabolism. Second, we investigated the potential role of PPARγ activators in the prevention of CAD. Our results provide a compelling argument that shared heritability between complex traits is highly heterogeneous across loci.


Assuntos
Desequilíbrio de Ligação/genética , Herança Multifatorial/genética , HDL-Colesterol/genética , Simulação por Computador , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/genética , Loci Gênicos , Genoma Humano , Estudo de Associação Genômica Ampla , Haplótipos/genética , Humanos , Modelos Genéticos , PPAR gama/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Tiazolidinedionas/uso terapêutico
18.
J Am Coll Cardiol ; 72(3): 300-310, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30012324

RESUMO

BACKGROUND: Identification of biomarkers that cause coronary artery disease (CAD) has led to important advances in prevention and treatment. Epidemiological analyses have identified many biomarker-CAD relationships; however, these associations may arise from reverse causation and/or confounding and therefore may not represent true causal associations. Mendelian randomization (MR) analyses overcome these limitations. OBJECTIVES: This study sought to identify causal mediators of CAD through a comprehensive screen of 237 biomarkers using MR. METHODS: MR was performed by identifying genetic determinants of 227 biomarkers in ORIGIN (Outcome Reduction With Initial Glargine Intervention) trial participants (N = 4,147) and combining these with genetic effects on CAD from the CARDIoGRAM consortium (60,801 cases and 123,504 controls). Blood concentrations of novel biomarkers identified by MR were then tested for association with incident major adverse cardiovascular events in ORIGIN. RESULTS: Six biomarkers were found to be causally linked to CAD after adjustment for multiple hypothesis testing. The causal role of 4 of these is well documented, whereas macrophage colony-stimulating factor 1 (CSF1) and stromal cell-derived factor 1 (CXCL12) have not previously been reported, to the best of our knowledge. MR analysis predicted an 18% higher risk of CAD per SD increase in CSF1 (odds ratio: 1.18; 95% confidence interval: 1.08 to 1.30; p = 2.1 × 10-4) and epidemiological analysis identified a 16% higher risk of major adverse cardiovascular events per SD (hazard ratio: 1.16; 95% confidence interval: 1.09 to 1.23; p < 0.001). Elevated CXCL12 levels were also identified as a causal risk factor for CAD with consistent epidemiological results. Furthermore, genetically predicted CSF1 and CXCL12 levels were associated with CAD in the UK Biobank (n = 343,735). CONCLUSIONS: The study identified CSF1 and CXCL12 as causal mediators of CAD in humans. Understanding the mechanism by which these markers mediate CAD will provide novel insights into CAD and could lead to new approaches to prevention. These results support targeting inflammatory processes and macrophages, in particular, to prevent CAD, consistent with the recent CANTOS (Canakinumab Antiinflammatory Thrombosis Outcome Study). (Outcome Reduction With Initial Glargine Intervention [ORIGIN]; NCT00069784).

19.
Can J Cardiol ; 34(7): 850-862, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29960614

RESUMO

Worldwide, more than 230 million adults have major noncardiac surgery each year. Although surgery can improve quality and duration of life, it can also precipitate major complications. Moreover, a substantial proportion of deaths occur after discharge. Current systems for monitoring patients postoperatively, on surgical wards and after transition to home, are inadequate. On the surgical ward, vital signs evaluation usually occurs only every 4-8 hours. Reduced in-hospital ward monitoring, followed by no vital signs monitoring at home, leads to thousands of cases of undetected/delayed detection of hemodynamic compromise. In this article we review work to date on postoperative remote automated monitoring on surgical wards and strategy for advancing this field. Key considerations for overcoming current barriers to implementing remote automated monitoring in Canada are also presented.

20.
Circ Genom Precis Med ; 11(1): e001849, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29874178

RESUMO

BACKGROUND: Despite evidence of high heritability, monogenic disorders are identified in a minor fraction of individuals with early-onset coronary artery disease (EOCAD). We hypothesized that some individuals with EOCAD carry a high number of common genetic risk variants, with a combined effect similar to Mendelian forms of coronary artery disease, such as familial hypercholesterolemia. METHODS AND RESULTS: To confirm the polygenic contribution to EOCAD (age of ≤40 years for men and ≤45 years for women), we calculated in 111 418 British participants from the UK Biobank cohort a genetic risk score (GRS) based on the presence of 182 independent variants associated with coronary artery disease (GRS182). Participants with a diagnosis of EOCAD who underwent a revascularization procedure (n=96) had a significantly higher GRS182 (P=3.21×10-9) than those without EOCAD. An increase of 1 SD in GRS182 corresponded to an odds ratio of 1.84 (1.52-2.24) for EOCAD. The prevalence of a polygenic contribution that increased EOCAD risk similar to what is observed in heterozygous familial hypercholesterolemia was estimated at 1 in 53. In a local cohort of individuals with EOCAD (n=30), GRS182 was significantly increased compared with UK Biobank controls (P=0.001). Seven participants (23%) had a GRS182 corresponding to an estimated 2-fold increase in EOCAD risk; none had a rare mutation involved in monogenic dyslipidemia or EOCAD. CONCLUSIONS: These results suggest a significant polygenic contribution in individuals presenting with EOCAD, which could be more prevalent than familial hypercholesterolemia. Determination of the polygenic risk component could be included in the diagnostic workup of patients with EOCAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA