Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
J Control Release ; 320: 328-336, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31981658

RESUMO

Liver fibrosis is an excessive wound healing process that occurs in response to liver damage depending on underlying aetiologies. Currently, there are no effective therapies and FDA-approved therapeutics for the treatment of liver fibrosis except liver transplantation. Multipotent adipose-derived stem cells (ADSCs) have received significant attention as regenerative medicine for liver fibrosis owing to their advantages over stem cells with other origins. However, intrinsic limitations of stem cell therapies, such as cellular rejection and tumor formation, have impeded clinical applications of the ADSC-based liver therapeutics. To overcome these problems, the extracellular nanovesicles (ENVs) responsible for the therapeutic effect of ADSCs (A-ENVs) have shown considerable promise as cell-free therapeutics for liver diseases. However, A-ENVs have not been used for the treatment of intractable chronic liver diseases including liver fibrosis and cirrhosis. Therefore, in this study, we investigated the in vitro and in vivo antifibrotic efficacy of A-ENVs in thioacetamide-induced liver fibrosis models. A-ENVs significantly downregulated the expression of fibrogenic markers, such as matrix metalloproteinase-2, collagen-1, and alpha-smooth muscle actin. The systemic administration of A-ENVs led to high accumulation in fibrotic liver tissue and the restoration of liver functionality in liver fibrosis models through a marked reduction in α-SMA and collagen deposition. These results demonstrate the significant potential of A-ENVs for use as extracellular nanovesicles-based therapeutics in the treatment of liver fibrosis and possibly other intractable chronic liver diseases.

2.
Pharmaceutics ; 11(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795253

RESUMO

Although self-assembled nanoparticles (SNPs) have been used extensively for targeted drug delivery, their clinical applications have been limited since most of the drugs are released into the blood before they reach their target site. In this study, metal-phenolic network (MPN)-coated SNPs (MPN-SNPs), which consist of an amphiphilic hyaluronic acid derivative, were prepared to be a pH-responsive nanocarrier to facilitate drug release in tumor microenvironments (TME). Due to their amphiphilic nature, SNPs were capable of encapsulating doxorubicin (DOX), chosen as the model anticancer drug. Tannic acid and FeCl3 were added to the surface of the DOX-SNPs, which allowed them to be readily coated with MPNs as the diffusion barrier. The pH-sensitive MPN corona allowed for a rapid release of DOX and effective cellular SNP uptake in the mildly acidic condition (pH 6.5) mimicking TME, to which the hyaluronic acid was exposed to facilitate receptor-mediated endocytosis. The DOX-loaded MPN-SNPs exhibited a higher cytotoxicity for the cancer cells, suggesting their potential use as a drug carrier in targeted cancer therapy.

3.
Bioconjug Chem ; 30(12): 3107-3118, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31756089

RESUMO

Various types of albumin-binding molecules have been conjugated to anticancer drugs, and these modified prodrugs could be effective in cancer treatments compared to free anticancer drugs. However, the tumor targeting of albumin-binding prodrugs has not been clearly investigated. Herein, we examined the in vitro and in vivo tumor-targeting efficiency of three different albumin-binding molecules including albumin-binding peptide (DICLPRWGCLW: PEP), fatty acid (palmitic acid: PA), and maleimide (MI), respectively. In order to characterize the different targeting efficiency of albumin-binding molecules, PEP, PA, or MI was chemically labeled with near-infrared fluorescence (NIRF) dye, Cy5.5, in resulting PEP-Cy5.5, PA-Cy5.5, and MI-Cy5.5. These NIRF dye-labeled albumin-binding molecules were physically or chemically bound to albumin via gentle incubation in aqueous conditions in vitro. Notably, PA-Cy5.5 with reversible and multivalent binding affinities formed stable albumin complexes, compared to PEP-Cy5.5 and MI-Cy5.5, confirmed via surface plasmon resonance measurement, gel electrophoresis assay, and albumin-bound column-binding test. In tumor-bearing mice model, the different albumin-binding affinities of PA-Cy5.5, PEP-Cy5.5, and MI-Cy5.5 greatly contributed to their tumor-targeting ability. Even though the binding affinity of PEP-Cy5.5 and MI-Cy5.5 to albumin is higher than that of PA-Cy5.5 in vitro, intravenous PA-Cy5.5 showed a higher tumor-targeting efficiency in tumor-bearing mice compared to that of PEP-Cy5.5 and MI-Cy5.5. The reversible and multivalent affinities of albumin-binding molecules to native serum albumin greatly increased the pharmacokinetics and tumor-targeting efficiency in vivo.

4.
ACS Appl Mater Interfaces ; 11(48): 45068-45079, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697470

RESUMO

We present an investigation of the structure and rheological behavior of catalyst inks for low-temperature polymer electrolyte membrane water electrolyzers. The ink consists of iridium oxide (IrO2) catalyst particles and a Nafion ionomer dispersed in a mixture of 1-propanol and water. The effects of ionomer concentration and catalyst concentration on the microstructure of the catalyst ink were studied. Studies on dilute inks (0.1 wt % IrO2) using zeta potential and dynamic light scattering measurements indicated a strong adsorption of the ionomer onto the catalyst particles which resulted in an increase in the ζ-potential and the z-average diameter. Steady-shear and dynamic-oscillatory-shear rheological measurements of concentrated IrO2 dispersions (35 wt % IrO2) indicated that the particles are strongly agglomerated in the absence of the ionomer. The addition of even a small amount of the ionomer (2.4 wt % with respect to total solids) caused the rheology to transition from shear thinning to Newtonian because of the reduction in agglomerated structure due to stabilization of the aggregates by the ionomer, consistent with the behavior of dilute inks. At intermediate ionomer loadings, between 2.4 and 9 wt %, the viscosity increased with increasing ionomer wt %, though remained Newtonian, predominantly due to the increasing ionomer volume fraction in the ink. For ionomer loadings greater than 9 wt %, the particles were found to be flocculated, likely induced by a dispersed ionomer. The flocculated inks exhibited strong shear-thinning and gel-like behaviors in steady-shear and oscillatory-shear rheology. The onset of flocculation was found to be sensitive to the catalyst concentration, where below 35 wt % of IrO2, flocculation was not observed. The rheological observations were further verified by ultra-small-angle X-ray scattering.

5.
Biology (Basel) ; 8(4)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717992

RESUMO

Recent studies showed that melatonin, a well-known pineal hormone that modulates the circadian rhythm, exerts beneficial effects against liver fibrosis. However, mechanisms for its protective action against the fibrotic processes remain incompletely understood. Here, we aimed to explore the effects of the hormone on transforming growth factor-ß1 (TGF-ß1)-stimulated epithelial-mesenchymal transition (EMT) in AML12 hepatocytes. Pretreatment with melatonin dose-dependently reversed downregulation of an epithelial marker and upregulation of mesenchymal markers after TGF-ß1 stimulation. Additionally, melatonin dose-dependently suppressed an increased phosphorylation of Smad2/3 after TGF-ß1 treatment. Besides the canonical Smad signaling pathway, an increase in phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was also dose-dependently attenuated by melatonin. The suppressive effect of the hormone on EMT stimulated by TGF-ß1 was not affected by luzindole, an antagonist of melatonin membrane receptors, suggesting that its membrane receptors are not required for the inhibitory action of melatonin. Moreover, melatonin suppressed elevation of intracellular reactive oxygen species (ROS) levels in TGF-ß1-treated cells. Finally, TGF-ß1-stimulated EMT was also inhibited by the antioxidant N-acetylcysteine. Collectively, these results suggest that melatonin prevents TGF-ß1-stimulated EMT through suppression of Smad and mitogen-activated protein kinase signaling cascades by deactivating ROS-dependent mechanisms in a membrane receptor-independent manner.

6.
J Pineal Res ; : e12623, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31743484

RESUMO

Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are effective hypoglycemic agents that can induce glycosuria. However, there are increasing concerns that they might induce diabetic ketoacidosis. This study investigated the effect of melatonin on SGTL2i-induced ketoacidosis in insulin-deficient type 2 diabetic (T2D) mice. The SGLT2i dapagliflozin reduced blood glucose level and plasma insulin concentrations in T2D mice, but induced increases in the concentrations of plasma ß-hydroxybutyrate, acetoacetate, and free fatty acid and a decrease in the concentration of plasma bicarbonate, resulting in ketoacidosis. Melatonin inhibited dapagliflozin-induced ketoacidosis without inducing any change in blood glucose level or plasma insulin concentration. In white adipose tissue, melatonin inhibited lipolysis and downregulated phosphorylation of PKA, HSL, and perilipin-1. In liver tissue, melatonin suppressed cellular cyclic AMP levels and downregulated phosphorylation of PKA, AMPK, and acetyl-CoA carboxylase (ACC). In addition, melatonin increased hepatic ACC activity, but decreased hepatic CPT1a activity and acetyl-CoA content. These effects of melatonin on lipolysis and hepatic ketogenesis were blocked by pretreatment with melatonin receptor antagonist or PKA activator. Collectively, these results suggest that melatonin can ameliorate SGLT2i-induced ketoacidosis by inhibiting lipolysis and hepatic ketogenesis though cyclic AMP/PKA signaling pathways in T2D mice. Thus, melatonin treatment may offer protection against SGLT2i-induced ketoacidosis.

7.
FEBS J ; 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31593615

RESUMO

Deficiency of either of the two homologs of poly(ADP-ribose) glycohydrolase (PARG), PARG-1 and PARG-2, in Caenorhabditis elegans leads to hypersensitivity to ionizing radiation (IR). In the germ cells of parg-2 mutant worms, the dissipation of recombinase RAD-51 foci was slower than in wild-type (WT) cells, suggesting defects in DNA double-strand break (DSB) repair via homologous recombination (HR). Nevertheless, RPA-1, the large subunit of replication protein A, accumulated faster in parg-2 worms and disappeared earlier than in WT worms. This accelerated RPA-1 accumulation may result from the enhanced expression of exonuclease-1 (EXO-1) after IR treatment. Accordingly, an exo-1 mutation reduced IR sensitivity and accumulation of RPA-1 in parg-2 worms. A mutation of polq-1, encoding for a key factor in the alternative end-joining (Alt-EJ) pathway, suppressed the IR hypersensitivity phenotype of parg-2 worms and normalized the kinetics of RAD-51 dissipation. This indicates that error-prone Alt-EJ may mediate DSB repair in parg-2 worms, causing hypersensitivity to IR. In summary, PARG-2 deficiency in C. elegans causes hyperactive DSB end resection likely through EXO-1 overproduction. DSBs with long single-stranded DNA ends in parg-2 worms are thought to be repaired by Alt-EJ instead of HR, causing genomic instability.

8.
Sci Rep ; 9(1): 14102, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575996

RESUMO

Cerebrovascular disease is a potential risk factor for Alzheimer's disease (AD). Although acute cerebral hypoperfusion causes neuronal necrosis and infarction, chronic cerebral hypoperfusion induces apoptosis in neurons, but its effects on the cognitive impairment are not clear. The purpose of this study was to evaluate the effects of chronic cerebral hypoperfusion on AD pathology and cerebral glucose metabolism. A model of chronic cerebral hypoperfusion was established by ligating the common carotid arteries bilaterally in adult male rats (CAL group). Sham-operated rats underwent the same procedures without artery ligation (control group). At 12 weeks after ligation, expression levels of amyloid-ß (Aß) and hyperphosphorylated tau (p-tau), as well as the regional cerebral glucose metabolism, were evaluated using Western blots and positron emission tomography with fluorine-18 fluorodeoxyglucose, respectively. The expression levels of Aß in the frontal cortex and hippocampus and of p-tau in the temporal cortex were significantly higher in the CAL group than those in the control group. The cerebral glucose metabolism of the amygdala, entorhinal cortex, and hippocampus was significantly decreased in the CAL group compared to that in the control. These results suggest that chronic cerebral hypoperfusion can induce AD pathology and may play a significant role in AD development.

9.
Biomaterials ; 224: 119494, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31542518

RESUMO

The therapeutic efficacy of photodynamic therapy (PDT) in cancer treatment is attributed to the conversion of tumor oxygen into reactive singlet oxygen (1O2) using photosensitizers. However, poor tissue penetration and rapid oxygen depletion have limited the effectiveness of PDT. Therefore, we have developed visible light-induced apoptosis activatable nanoparticles of the photosensitizer (Ce6)-caspase 3 cleavable peptide (Asp-Glu-Val-Asp, DEVD)-anticancer drug monomethyl auristatin E (MMAE) conjugate, resulting in Ce6-DEVD-MMAE nanoparticles. The average size of self-assembled Ce6-DEVD-MMAE nanoparticles was 90.8 ±â€¯18.9 nm. Compared with conventional PDT based on high-energy irradiation, the new therapy uses lower-energy irradiation to induce apoptosis of cancer cells, and activation of caspase 3 to successfully cleave the anticancer drug MMAE from the Ce6-DEVD-MMAE nanoparticles, resulting in strong cytotoxic effects in cancer cells. Notably, the one-time activation of MMAE in the Ce6-DEVD-MMAE nanoparticles further amplified the cytotoxic effect resulting in additional cell death in the absence of visible light irradiation. Furthermore, Ce6-DEVD-MMAE nanoparticles passively accumulated in the targeted tumor tissues via enhanced permeation and retention (EPR) effect in mice with squamous cell carcinoma (SCC7). The high levels of toxicity were retained after exposure to lower-energy irradiation. However, Ce6-DEVD-MMAE nanoparticles did not show any toxicity in the absence of exposure to visible light irradiation, in contrast to the toxicity of free MMAE (1-10 nM). Thus, the light-induced therapeutic strategy based on apoptotic activation of Ce6-DEVD-MMAE nanoparticles can be used to treat solid tumors inaccessible to conventional PDT.

10.
Biology (Basel) ; 8(3)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480317

RESUMO

Melatonin is well known to modulate the sleep-wake cycle. Accumulating evidence suggests that melatonin also has favorable effects such as anti-oxidant and anti-inflammatory properties in numerous disease models. It has been reported that melatonin has therapeutic effects against cisplatin-induced acute kidney injury (AKI). However, mechanisms underlying the therapeutic action of melatonin on the renal side-effects of cisplatin therapy remain poorly understood. In this study, we showed that melatonin treatment significantly ameliorates cisplatin-induced acute renal failure and histopathological alterations. Increased expression of tubular injury markers was largely reduced by melatonin. Melatonin treatment inhibited caspase-3 activation and apoptotic cell death. Moreover, protein levels of key components of the molecular machinery for necroptosis were decreased by melatonin. Melatonin also attenuated nuclear factor-κB activation and suppressed expression of pro-inflammatory cytokines. Consistent with in vivo findings, melatonin dose-dependently decreased apoptosis and necroptosis in cisplatin-treated mouse renal tubular epithelial cells. Collectively, our findings suggest that melatonin ameliorates cisplatin-induced acute renal failure and structural damages through dual suppression of apoptosis and necroptosis. These results reveal a novel mechanism underlying the therapeutic effect of melatonin against cisplatin-induced AKI and strengthen the idea that melatonin might be a promising therapeutic agent for the renal side-effects of cisplatin therapy.

11.
Antioxidants (Basel) ; 8(8)2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31431003

RESUMO

Sirtuin 1 (Sirt1) is an essential modulator of cellular metabolism and has pleiotropic effects. It was recently reported that Sirt1 overexpression in kidney tubule ameliorates cisplatin-induced acute kidney injury (AKI). However, whether pharmacological activation of Sirt1 also has a beneficial effect against the disease remains unclear. In this study, we aimed to evaluate whether SRT1720, a potent and specific activator of Sirt1, could ameliorate cisplatin-induced AKI. We found that SRT1720 treatment ameliorated cisplatin-induced acute renal failure and histopathological alterations. Increased levels of tubular injury markers in kidneys were significantly attenuated by SRT1720. SRT1720 treatment also suppressed caspase-3 activation and apoptotic cell death. Increased expression of 4-hydroxynonenal, elevated malondialdehyde level, and decreased ratio of reduced glutathione/oxidized glutathione after cisplatin injection were significantly reversed by SRT1720. In addition, SRT1720 treatment decreased renal expression of pro-inflammatory cytokines and prevented macrophage infiltration into damaged kidneys. We also showed that the therapeutic effects of SRT1720 were associated with reduced acetylation of p53 and nuclear factor kappa-B p65 and preservation of peroxisome function, as evidenced by recovered expression of markers for number and function of peroxisome. These results suggest that Sirt1 activation by SRT1720 would be a useful therapeutic option for cisplatin-induced AKI.

12.
Oncology ; 97(3): 180-188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31330520

RESUMO

BACKGROUND: Hormone receptor-positive breast cancer accounts for nearly two-thirds of breast cancer cases; it ultimately acquires resistance during endocrine treatment and becomes more aggressive. This study evaluated the role of developmental endothelial locus (Del)-1 in tamoxifen-resistant (TAM-R) breast cancer. METHODS: Del-1 expression in recurrent TAM-R breast cancer tissue was evaluated and compared to that in the original tumor tissue from the same patients. Del-1 expression was also evaluated in TAM-R cells by quantitative real-time PCR, western blotting, and enzyme-linked immunosorbent assay. The effects of Del-1 knockdown on the proliferation, migration, and invasion of TAM-R cells was assessed with wound-healing and Matrigel transwell assays. RESULTS: Del-1 was more highly expressed in recurrent breast cancer as compared to the original tumor tissues before initiation of endocrine treatment. Del-1 mRNA was upregulated in TAM-R and small interfering RNA-mediated knockdown of Del-1 suppressed the migration and proliferation of TAM-R cells while partly restoring TAM sensitivity. And the TAM resistance was recovered by knockdown of Del-1. CONCLUSIONS: TAM-R breast cancer is characterized by Del-1 overexpression and tumor progression can be inhibited by Del-1 depletion, which restores TAM sensitivity. Thus, therapeutic strategies that target Del-1 may be effective for the treatment of hormone-resistant breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , RNA Interferente Pequeno
13.
Biomaterials ; 217: 119299, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254932

RESUMO

Charge-convertible polymers are a class of intelligent polymers that can convert their charges in response to a certain stimulus in their environment. This unique property endows charge-convertible polymer-based biomaterials with great advantages in the treatment of disease. Drug-loaded charge-convertible polymeric nanoparticles have the ability to target tumor cells by converting their surface charges from negative or neutral to positive at the tumor site. In addition, charge-convertible polymeric biomaterials can form complexes with negatively charged therapeutic agents and release them through charge conversion at the desired time and site. In this review, the properties of charge-convertible polymers and their applications in the treatment of cancer and stroke are covered. More importantly, the limitations and perspectives of charge-convertible polymeric biomaterials in future clinical applications are discussed.

14.
Acc Chem Res ; 52(7): 1771-1782, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31241894

RESUMO

Growth in the knowledge of cancer biology has led to the emergence and evolution of cancer nanomedicines by providing the rationale for leveraging nanotechnology to develop better treatment options. The discovery of nanometer-sized intercellular openings in the defective angiogenic tumor vasculature contributed to the development of an idea for the well-known cancer passive targeting regime, enhanced permeability and retention (EPR) effect, of the nanomedicines. Recently, reactive oxygen species (ROS) have been highlighted as one of the key players that underlie the acquisition of the various hallmarks of cancer. As ROS are associated with all stages of cancer, their applications in cancer treatment based on the following concentration-dependent implications have attracted much attention: (1) low to moderate levels of ROS as key signaling molecules, (2) elevated levels of ROS in cancer cells as one of the unique characteristics of cancer, and (3) excessive levels of ROS as cytotoxic agents. Considering ROS from a different point of view, various cancer nanomedicines have been designed to achieve spatiotemporal control of therapeutic action, the main research focus in this area. This Account includes our efforts and preclinical achievements in development of nanomedicines for a range of ROS-mediated cancer therapies. It begins with general background regarding cancer nanomedicines, the significance of ROS in cancer, and a brief overview of ROS-mediated approaches for cancer therapy. Then, this Account highlights the two key roles of ROS that define therapeutic purposes of cancer nanomedicines: (1) ROS as drug delivery enhancers and (2) ROS as cell death inducers. The former inspired us to develop nitric oxide-generating nanoparticles for improved EPR effect, endogenous ROS-responsive polymeric micelles for enhanced intracellular drug delivery, and exogenous ROS-activated micelles for subcellular localization via photochemical internalization. While refining conventional chemotherapy, recent researches also have focused on the latter, the cytotoxic ROS, to advance alternative treatment modalities such as oxidation therapy, photodynamic therapy (PDT), and sonodynamic therapy (SDT). In particular, we have been motivated to develop polymeric nanoreactors containing enzymes to produce H2O2 for oxidation therapy, photosensitizer-loaded gold-nanoclustered polymeric nanoassemblies for photothermally activated PDT overcoming the oxygen dependency of PDT, and hydrophilized TiO2 nanoparticles and Au-TiO2 nanocomposites as novel sonosensitizers for improved SDT efficiency. The integration of nanomedicine and ROS-mediated therapy has emerged as the new paradigm in the treatment of cancer, based on promising proof-of-concept demonstrations in preclinical studies. Further efforts to ensure clinical translation along with more sophisticated cancer nanomedicines to address relevant challenges are expected to be made in the coming years.

15.
Pflugers Arch ; 471(7): 1041, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111222

RESUMO

The publisher would like to apologize for the failed cross-linking of the following Commentary by Jae-Hyung Park and Dae-Kyu Song.

16.
Colloids Surf B Biointerfaces ; 179: 9-16, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928802

RESUMO

Fluorogenic nanoprobes capable of providing microenvironmental information have extensively been developed to improve the diagnostic accuracy for early or metastatic cancer detection. In cancer-associated microenvironment, matrix metalloproteinase-2,9 (MMP-2,9) has drawn attention as a representative enzymatic marker for diagnosis, prognosis, and prediction of various cancers, which is overexpressed in the primary site as well as metastatic regions. Here, we devised dual-emissive fluorogenic nanoprobe (DFNP) emitting both MMP-2,9-sensitive and insensitive fluorescence signals, for accurate monitoring of the MMP-2,9 activity in metastatic regions. DFNP was nanoscopically constructed by amphiphilic self-assembly between a constantly fluorescent polymer surfactant labeled with Cy7 (F127-Cy7) and an initially nonfluorescent hydrophobic peptide (Cy5.5-MMP-Q) that is fluorogenic in response to MMP-2,9. Ratiometric readout (Cy5.5/Cy7) by dual-channel imaging could normalize the enzyme-responsive sensing signal relative to the constantly emissive internal reference that reflects the probe amount, allowing for semi-quantitative analysis on the MMP-2,9-related tissue microenvironment. In addition to the dual-channel emission, the nanoconstructed colloidal structure of DFNP enabled efficient accumulation to lymph node in vivo. Because of these two colloidal characteristics, when injected intradermally to a mouse model of lymph node metastasis, DFNP could produce reliable ratiometric signals to provide information on the MMP-2,9 activity in the lymph nodes depending on metastatic progression, which corresponded well to the temporal histologic analysis. Furthermore, ratiometric lymph node imaging with DFNP after photodynamic therapy allowed for monitoring a therapeutic response to the given cancer treatment, demonstrating diagnostic and prognostic potential of the nanoconstructed colloidal sensor of tumor microenvironment in cancer treatment.


Assuntos
Diagnóstico por Imagem , Corantes Fluorescentes/química , Metástase Linfática/diagnóstico por imagem , Nanopartículas/química , Microambiente Tumoral , Animais , Carbocianinas/química , Linhagem Celular Tumoral , Fluorescência , Linfonodos/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Fototerapia
17.
Environ Sci Pollut Res Int ; 26(11): 11503-11507, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30887453

RESUMO

Combined heat and power (CHP), which produces both heat and electricity at the same time, is so efficient that it can reduce energy use and emit less carbon dioxide (CO2) than conventional fossil fuel use. This article attempts to look empirically into the impact of CHP share in total electricity generation on CO2 emissions in a cross-country context. Data from 35 countries during the period 2009-2015 are used. For this purpose, the variable of CO2 emissions is regressed on three variables of constant, gross domestic product, and CHP share using two robust estimators. The results show that the level of CHP share of a country affects the level of its CO2 emissions negatively. That is, CHP leads to less CO2 emissions.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Conservação dos Recursos Naturais , Desenvolvimento Econômico , Centrais Elétricas , Conservação dos Recursos Naturais/economia , Países Desenvolvidos , Países em Desenvolvimento , Eletricidade , Combustíveis Fósseis , Temperatura Alta , Centrais Elétricas/economia
19.
J Extracell Vesicles ; 8(1): 1565885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719241

RESUMO

Ultraviolet-B (UVB) irradiation causes imbalance between dermal matrix synthesis and degradation through aberrant upregulation of matrix metalloproteinases (MMPs), which leads to overall skin photoaging. We investigated the effects of extracellular vesicles (EVs) derived from human adipose-derived stem cells (HASCs) on photo-damaged human dermal fibroblasts (HDFs). EVs were isolated from conditioned media of HASCs with tangential flow filtration and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), western blotting, micro RNA (miRNA) arrays, cytokine arrays and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The effects of EVs on the UVB-irradiated HDFs were evaluated using scratch assay, ELISA and real-time PCR. Microarrays exhibited that EVs are rich in various miRNAs and proteins, and that these EV contents are linked to a broad range of biological functions, including fibroblast proliferation, UV protection, collagen biosynthesis, DNA repair and cell ageing. A scratch assay showed that HASC-EVs enhanced the migration ability of UVB-irradiated HDFs. Real-time RT-PCR and ELISA analyses revealed that the HASC-derived EVs significantly suppressed the overexpression of MMP-1, -2, -3 and -9 induced by UVB irradiation and enhanced the expression of collagen types I, II, III and V and elastin. In particular, tissue inhibitor of metalloproteinase (TIMP)-1 and transforming growth factor (TGF)-ß1, which are important factors involved in MMP suppression and ECM synthesis, were upregulated in EV-treated HDFs after UVB irradiation. Overall results suggest that diverse components that are enriched in HASC-derived EVs could act as a biochemical cue for recovery from skin photoaging.

20.
Adv Mater ; 31(34): e1803549, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30773699

RESUMO

There is a rapidly increasing interest in developing stimuli-responsive nanomaterials for treating a variety of diseases. By enabling the activation of function locally at the sites of interest, it is possible to increase therapeutic efficacy significantly while simultaneously reducing adverse side effects. While there are many sophisticated nanomaterials available, they are often highly complex and not easily transferrable to industrial scales and clinical settings. However, nanomaterials based on hyaluronic acid offer a compelling strategy for reducing their complexity while retaining several desirable benefits such as active targeting and stimuli-responsive degradation. Herein, the basic properties of hyaluronic acid, its binding partners, and natural routes for degradation by hyaluronidases-hyaluronic-acid-degrading enzymes-and oxidative stresses are discussed. Recent advances in designing hyaluronic acid-based, actively targeted, hyaluronidase- or reactive-oxygen-species-responsive nanomaterials for both diagnostic imaging and therapeutic delivery, which go beyond merely the classical targeting of CD44, are summarized.


Assuntos
Portadores de Fármacos/química , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Nanoestruturas/química , Animais , Diagnóstico por Imagem , Técnicas de Transferência de Genes , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/genética , Hialuronoglucosaminidase/metabolismo , Imagem Molecular , Terapia de Alvo Molecular , Estresse Oxidativo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA