Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtros adicionais

Intervalo de ano
Int J Radiat Oncol Biol Phys ; 102(4): 821-829, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908220


PURPOSE: To develop a prostate tumor habitat risk scoring (HRS) system based on multiparametric magnetic resonance imaging (mpMRI) referenced to prostatectomy Gleason score (GS) for automatic delineation of gross tumor volumes. A workflow for integration of HRS into radiation therapy boost volume dose escalation was developed in the framework of a phase 2 randomized clinical trial (BLaStM). METHODS AND MATERIALS: An automated quantitative mpMRI-based 10-point pixel-by-pixel method was optimized to prostatectomy GSs and volumes using referenced dynamic contrast-enhanced and apparent diffusion coefficient sequences. The HRS contours were migrated to the planning computed tomography scan for boost volume generation. RESULTS: There were 51 regions of interest in 12 patients who underwent radical prostatectomy (26 with GS ≥7 and 25 with GS 6). The resultant heat maps showed inter- and intratumoral heterogeneity. The HRS6 level was significantly associated with radical prostatectomy regions of interest (slope 1.09, r = 0.767; P < .0001). For predicting the likelihood of cancer, GS ≥7 and GS ≥8 HRS6 area under the curve was 0.718, 0.802, and 0.897, respectively. HRS was superior to the Prostate Imaging, Reporting and Diagnosis System 4/5 classification, wherein the area under the curve was 0.62, 0.64, and 0.617, respectively (difference with HR6, P < .0001). HRS maps were created for the first 37 assessable patients on the BLaStM trial. There were an average of 1.38 habitat boost volumes per patient at a total boost volume average of 3.6 cm3. CONCLUSIONS: An automated quantitative mpMRI-based method was developed to objectively guide dose escalation to high-risk habitat volumes based on prostatectomy GS.

Int J Radiat Oncol Biol Phys ; 97(3): 586-595, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011044


PURPOSE: To build a framework for investigation of the associations between imaging, clinical target volumes (CTVs), and metabolic tumor volumes (MTVs) features for better understanding of the underlying information in the CTVs and dependencies between these volumes. High-throughput extraction of imaging and metabolomic quantitative features from magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging of glioblastoma multiforme (GBM) results in tens of variables per patient. In radiation therapy of GBM the relevant metabolic tumor volumes (MTVs) are related to aberrant levels of N-acetyl aspartate (NAA) and choline (Cho). The corresponding clinical target volumes (CTVs) for radiation therapy are based on contrast-enhanced T1-weighted (CE-T1w) and T2-weighted (T2w)/fluid-attenuated inversion recovery MRI. METHODS AND MATERIALS: Necrotic portions, enhancing lesion, and edema were manually contoured on CE-T1w/T2w images for 17 GBM patients. Clinical target volumes and MTVs for NAA (MTVNAA) and Cho (MTVCho) were constructed. Imaging and metabolic features related to size, shape, and signal intensities of the volumes were extracted. Tumors were also scored categorically for 10 semantic imaging traits by a neuroradiologist. All features were investigated for redundancy. Two-way correlations between imaging and CTVs/MTVs features were visualized as heatmaps. Associations between MTVNAA and MTVCho and imaging features were studied using Spearman correlation. RESULTS: Forty-eight imaging features were extracted per patient. Half of the imaging traits were replaced with automatically extracted continuous variables. Twenty features were extracted from CTVs and MTVs. A series of semantic imaging traits were replaced with automatically extracted continuous variables. There were multiple (22) significant correlations of imaging measures with CTVs/MTVNAA, whereas there were only 6 with CTVs/MTVCho. CONCLUSIONS: A framework for investigation of codependencies between MRI and magnetic resonance spectroscopic imaging radiomic features and CTVs/MTVs has been established. The MTV for NAA was found to be closely associated with MRI volumes, whereas very few imaging features were related to MTVCho, indicating that Cho provides additional information to imaging.

Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Metabolômica , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Colina/metabolismo , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imagem por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Necrose/metabolismo , Carga Tumoral