Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Am J Hum Genet ; 108(8): 1436-1449, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34216551


Despite widespread clinical genetic testing, many individuals with suspected genetic conditions lack a precise diagnosis, limiting their opportunity to take advantage of state-of-the-art treatments. In some cases, testing reveals difficult-to-evaluate structural differences, candidate variants that do not fully explain the phenotype, single pathogenic variants in recessive disorders, or no variants in genes of interest. Thus, there is a need for better tools to identify a precise genetic diagnosis in individuals when conventional testing approaches have been exhausted. We performed targeted long-read sequencing (T-LRS) using adaptive sampling on the Oxford Nanopore platform on 40 individuals, 10 of whom lacked a complete molecular diagnosis. We computationally targeted up to 151 Mbp of sequence per individual and searched for pathogenic substitutions, structural variants, and methylation differences using a single data source. We detected all genomic aberrations-including single-nucleotide variants, copy number changes, repeat expansions, and methylation differences-identified by prior clinical testing. In 8/8 individuals with complex structural rearrangements, T-LRS enabled more precise resolution of the mutation, leading to changes in clinical management in one case. In ten individuals with suspected Mendelian conditions lacking a precise genetic diagnosis, T-LRS identified pathogenic or likely pathogenic variants in six and variants of uncertain significance in two others. T-LRS accurately identifies pathogenic structural variants, resolves complex rearrangements, and identifies Mendelian variants not detected by other technologies. T-LRS represents an efficient and cost-effective strategy to evaluate high-priority genes and regions or complex clinical testing results.

Aberrações Cromossômicas , Análise Citogenética/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Genoma Humano , Mutação , Variações do Número de Cópias de DNA , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Masculino , Análise de Sequência de DNA
Artigo em Inglês | MEDLINE | ID: mdl-32913980


Purpose: Precision oncology develops and implements evidence-based personalized therapies that are based on specific genetic targets within each tumor. However, a major challenge that remains is the provision of a standardized, up-to-date, and evidenced-based precision medicine initiative across a geographic region. Materials and Methods: We developed a statewide molecular tumor board that integrates academic and community oncology practices. The Precision Medicine Molecular Tumor Board (PMMTB) has three components: a biweekly Web-based teleconference tumor board meeting provided as a free clinical service, an observational research registry, and a monthly journal club to establish and revise evidence-based guidelines for off-label therapies. The PMMTB allows for flexible and rapid implementation of treatment, uniformity in practice, and the ability to track outcomes. Results: We describe the implementation of the PMMTB and its first year of activity. Seventy-seven patient cases were presented, 48 were enrolled in a registry, and 38 had recommendations and clinical follow-up. The 38 subjects had diverse solid tumors (lung, 45%; GI, 21%; breast, 13%; other, 21%). Of these subjects, targeted therapy was recommended for 32 (84%). Clinical trials were identified for 24 subjects (63%), and nontrial targeted medicines for 16 (42%). Nine subjects (28%) received recommended therapy with a response rate of 17% (one of six) and a clinical benefit rate (partial response + stable disease) of 38% (three of eight). Although clinical trials often were identified, patients rarely enrolled. Conclusion: The PMMTB provides a model for a regional molecular tumor board with clinical utility. This work highlights the need for outcome registries and improved access to clinical trials to pragmatically implement precision oncology.