Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 178: 108723, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539822

RESUMO

In California, the metamorphic blueschist occurrences within the Franciscan Complex are commonly composed of glaucophane, which can be found with a fibrous habit. Fibrous glaucophane's potential toxicity/pathogenicity has never been determined and it has not been considered by the International Agency for Research on Cancer (IARC) as a potential carcinogen to date. Notwithstanding, outcrops hosting fibrous glaucophane are being excavated today in California for building/construction purposes (see for example the Calaveras Dam Replacement Project - CDRP). Dust generated by these excavation activities may expose workforces and the general population to this potential natural hazard. In this work, the potential toxicity/pathogenicity of fibrous glaucophane has been determined using the fibre potential toxicity index (FPTI). This model has been applied to a representative glaucophane-rich sample collected at San Anselmo, Marin County (CA, USA), characterized using a suite of experimental techniques to determine morphometric, crystal-chemical parameters, surface reactivity, biodurability and related parameters. With respect to the asbestos minerals, the FPTI of fibrous glaucophane is remarkably higher than that of chrysotile, and comparable to that of tremolite, thus supporting the application of the precautionary approach when excavating fibrous glaucophane-rich blueschist rocks. Because fibrous glaucophane can be considered a potential health hazard, just like amphibole asbestos, it should be taken into consideration in the standard procedures for the identification and assessment of minerals fibres in soil and air samples.


Assuntos
Amiantos Anfibólicos/toxicidade , Fibras Minerais/toxicidade , Asbestos , Asbestos Serpentinas , California , Humanos , Testes de Toxicidade , Virulência
2.
Chem Res Toxicol ; 32(10): 2063-2077, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31464428

RESUMO

Asbestos is a commercial term indicating six natural silicates with asbestiform crystal habit. Of these, five are double-chain silicates (amphibole) and one is a layer silicate (serpentine asbestos or chrysotile). Although all species are classified as human carcinogens, their degree of toxicity is still a matter of debate. Amphibole asbestos species are biopersistent in the human lungs and exert their chronic toxic action for decades, whereas chrysotile is not biopersistent and transforms into an amorphous silica structure prone to chemical/physical clearance when exposed to the acidic environment created by the alveolar macrophages. There is evidence in the literature of the toxicity of chrysotile, but its limited biopersistence is thought to explain the difference in toxicity with respect to amphibole asbestos. To date, no comprehensive model describing the toxic action of chrysotile in the lungs is available, as the structure and toxic action of the product formed by the biodissolution of chrysotile are unknown. This work is aimed at fulfilling this gap and explaining the toxic action in terms of structural, chemical, and physical properties. We show that chrysotile's fibrous structure induces cellular damage, mainly through physical interactions. Based on our previous work and novel findings, we propose the following toxicity model: inhaled chrysotile fibers exert their toxicity in the alveolar space by physical and biochemical action. The fibers are soon leached by the intracellular acid environment into a product with residual toxicity, and the dissolution process liberates toxic metals in the intracellular and extracellular environment.

3.
Sci Rep ; 9(1): 8735, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217551

RESUMO

Electroactive self-assembled monolayers (SAMs) bearing a ferrocene (Fc) redox couple were chemically assembled on H-terminated semiconducting degenerate-doped n-type Si(111) substrate. This allows to create a Si(111)|organic-spacer|Fc hybrid interface, where the ferrocene moiety is covalently immobilized on the silicon, via two alkyl molecular spacers of different length. Organic monolayer formation was probed by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and X-ray photoelectron spectroscopy (XPS) measurements, which were also used to estimate thickness and surface assembled monolayer (SAM) surface coverage. Atomic force microscopy (AFM) measurements allowed to ascertain surface morphology and roughness. The single electron transfer process, between the ferrocene redox probe and the Si electrode surface, was probed by cyclic voltammetry (CV) measurements. CVs recorded at different scan rates, in the 10 to 500 mV s-1 range, allowed to determine peak-to-peak separation, half-wave potential, and charge-transfer rate constant (KET). The experimental findings suggest that the electron transfer is a one electron quasi-reversible process. The present demonstration of surface engineering of functional redox-active organometallic molecule can be efficient in the field of molecular electronics, surface-base redox chemistry, opto-electronic applications.

4.
Nat Commun ; 9(1): 4443, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349135

RESUMO

In the original version of this Article, financial support was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include funding from the Deutsche Forschungsgemeinschaft Grant SFB958/A04.

5.
ACS Appl Mater Interfaces ; 10(40): 34392-34400, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30221920

RESUMO

Transition metal dichalcogenides, such as molybdenum disulfide (MoS2), show peculiar chemical/physical properties that enable their use in applications ranging from micro- and nano-optoelectronics to surface catalysis, gas and light detection, and energy harvesting/production. One main limitation to fully harness the potential of MoS2 is given by the lack of scalable and low environmental impact synthesis of MoS2 films with high uniformity, hence setting a significant challenge for industrial applications. In this work, we develop a versatile and scalable sol-gel-derived MoS2 film fabrication by spin coating deposition of an aqueous sol on different technologically relevant, flexible substrates with annealing at low temperatures (300 °C) and without the need of sulfurization and/or supply of hydrogen as compared to cutting-edge techniques. The electronic and physical properties of the MoS2 thin films were extensively investigated by means of surface spectroscopy and structural characterization techniques. Spatially homogenous nanocrystalline 2H-MoS2 thin films were obtained exhibiting high chemical purity and excellent electronic properties such as an energy band gap of 1.35 eV in agreement with the 2H phase of the MoS2, and a density of states that corresponds to the n-type character expected for high-quality 2H-MoS2. The potential use of sol-gel-grown MoS2 as the candidate material for electronic applications was tested via electrical characterization and demonstrated via the reversible switching in resistivity typical for memristors with a measured ON-OFF ratio ≥102. The obtained results highlight that the novel low-cost fabrication method has a great potential to promote the use of high-quality MoS2 in technological and industrial-relevant scalable applications.

6.
Nanoscale ; 10(28): 13449-13461, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29972180

RESUMO

In this work we propose a realistic model of nanometer-thick SiC/SiOx core/shell nanowires (NWs) using a combined first-principles and experimental approach. SiC/SiOx core/shell NWs were first synthesised by a low-cost carbothermal method and their chemical-physical experimental analysis was accomplished by recording X-ray absorption near-edge spectra. In particular, the K-edge absorption lineshapes of C, O, and Si are used to validate our computational model of the SiC/SiOx core/shell NW architectures, obtained by a multiscale approach, including molecular dynamics, tight-binding and density functional simulations. Moreover, we present ab initio calculations of the electronic structure of hydrogenated SiC and SiC/SiOx core/shell NWs, studying the modification induced by several different substitutional defects and impurities into both the surface and the interfacial region between the SiC core and the SiOx shell. We find that on the one hand the electron quantum confinement results in a broadening of the band gap, while hydroxyl surface terminations decrease it. This computational investigation shows that our model of SiC/SiOx core/shell NWs is capable to deliver an accurate interpretation of the recorded X-ray absorption near-edge spectra and proves to be a valuable tool towards the optimal design and application of these nanosystems in actual devices.

7.
ACS Appl Mater Interfaces ; 10(9): 8132-8140, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29411962

RESUMO

Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.

8.
Nat Commun ; 9(1): 5, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295994

RESUMO

There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models.


Assuntos
Algoritmos , Aprendizado de Máquina , Cadeias de Markov , Simulação de Dinâmica Molecular , Redes Neurais de Computação , Cinética , Ligação Proteica , Dobramento de Proteína
9.
Phys Chem Chem Phys ; 18(36): 24890-904, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27412494

RESUMO

The unoccupied electronic structure of thick films of tetraphenylporphyrin and tetrakis(pentafluorophenyl)porphyrin Cu(ii) complexes (hereafter, CuTPP and CuTPP(F)) deposited on Au(111) has been studied by combining the outcomes of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with those of spin-unrestricted time-dependent density functional (TD-DFT) calculations carried out either within the scalar relativistic zeroth order regular approximation (ZORA) framework (C, N and F K-edges) or by using the Tamm-Dancoff approximation coupled to ZORA and including spin-orbit effects (Cu L2,3-edges). Similarly to the modelling of NEXAFS outcomes pertaining to other Cu(ii) complexes, the agreement between theory and experiment is more than satisfactory, thus confirming the open-shell TD-DFT to be a useful tool to look into NEXAFS results pertinent to Cu(ii) compounds. The combined effect of metalation and phenyl (Ph) fluorine decoration is found to favour an extensive mixing between (Ph)σ* and pristine porphyrin macrocyle (pmc) (pmc)π* virtual levels. The lowest lying excitation in the C and N K-edge spectra of both CuTPP and CuTPP(F) is associated with a ligand-to-metal-charge-transfer transition, unambiguously revealed in the (CuTPP)N K-edge spectral pattern. Moreover, the comparison with literature data pertaining to the modelling of the (Cu(II))L2,3 features in the phthalocyanine-Cu(ii) (CuPc) complex provided further insights into how metal-to-ligand-charge-transfer transitions associated with excitations from 2p(Cu(II)) AOs to low-lying, ligand-based π* MOs may contribute to the Cu(ii) L2,3-edge intensity and thus weaken its believed relationship with the Cu(ii)-ligand symmetry-restricted covalency. Despite the coordinative pocket of CuTPP/CuTPP(F) mirroring CuPc, the ligand-field strength exerted by the phthalocyanine ligand on the Cu(ii) centre is experimentally found and theoretically confirmed to be slightly stronger than that experienced by Cu in CuTPP and CuTPP(F). On the whole, the obtained results complement those published in the near past by the same group on the occupied and empty states of the H2TPP and H2TPP(F) free ligands as well as on the occupied states of both CuTPP and CuTPP(F), thus providing the final piece to get a thorough description of electronic perturbations associated with the metalation and the Ph halogen decoration of H2TPP.

10.
Beilstein J Nanotechnol ; 7: 263-277, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26977383

RESUMO

This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon-chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

11.
J Chem Phys ; 143(10): 104702, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26374051

RESUMO

Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S-C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

12.
ACS Appl Mater Interfaces ; 7(34): 19134-44, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26280572

RESUMO

A combination of ultraviolet and X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and first principle calculations was used to study the electronic structure at the interface between the strong molecular acceptor 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ) and a graphene layer supported on either a quartz or a copper substrate. We find evidence for fundamentally different charge redistribution mechanisms in the two ternary systems, as a consequence of the insulating versus metallic character of the substrates. While electron transfer occurs exclusively from graphene to F6TCNNQ on the quartz support (p-doping of graphene), the Cu substrate electron reservoir induces an additional electron density flow to graphene decorated with the acceptor monolayer. Remarkably, graphene on Cu is n-doped and remains n-doped upon F6TCNNQ deposition. On both substrates, the work function of graphene increases substantially with a F6TCNNQ monolayer atop, the effect being more pronounced (∼1.3 eV) on Cu compared to quartz (∼1.0 eV) because of the larger electrostatic potential drop associated with the long-distance graphene-mediated Cu-F6TCNNQ electron transfer. We thus provide a means to realize high work function surfaces for both p- and n-type doped graphene.

13.
Beilstein J Nanotechnol ; 6: 404-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821680

RESUMO

Ag and Ag@MgO core-shell nanoparticles (NPs) with a diameter of d = 3-10 nm were obtained by physical synthesis methods and deposited on Si with its native ultrathin oxide layer SiO x (Si/SiO x ). Scanning electron microscopy and transmission electron microscopy (TEM) images of bare Ag NPs revealed the presence of small NP aggregates caused by diffusion on the surface and agglomeration. Atomic resolution TEM gave evidence of the presence of crystalline multidomains in the NPs, which were due to aggregation and multitwinning occurring during NP growth in the nanocluster source. Co-deposition of Ag NPs and Mg atoms in an oxygen atmosphere gave rise to formation of a MgO shell matrix surrounding the Ag NPs. The behaviour of the surface plasmon resonance (SPR) excitation in surface differential reflectivity (SDR) spectra with p-polarised light was investigated for bare Ag and Ag@MgO NPs. It was shown that the presence of MgO around the Ag NPs caused a red shift of the plasmon excitation, and served to preserve its existence after prolonged (five months) exposure to air, realizing the possibility of technological applications in plasmonic devices. The Ag NP and Ag@MgO NP film features in the SDR spectra could be reproduced by classical electrodynamics simulations by treating the NP-containing layer as an effective Maxwell Garnett medium. The simulations gave results in agreement with the experiments when accounting for the experimentally observed aggregation.

14.
Langmuir ; 31(11): 3546-52, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25726858

RESUMO

This article reports on a facile and fast strategy for the self-assembled monolayer (SAM) functionalization of nickel surfaces, employing cyclic voltammetry (CV) cycling of a suitable tailored solution containing the species to be adsorbed. Results are presented for ultrathin films formed on Ni by 1-hexadecanethiol (C16), L-cysteine (L-cys), and the poly{methyl (2R)-3-(2,2'-bithiophen-4-ylsulfanyl)-2-[(tert-butoxycarbonyl)amino]propanoate} (PCT-L) thiophene-based chiral polymer. The effective formation of high-quality ultrathin organic films on the nickel was verified both electrochemically and by exploiting typical surface characterization techniques such as contact angle, ellipsometry, atomic force microscopy (AFM), polarization modulation-infrared reflection-absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS).

15.
ACS Appl Mater Interfaces ; 7(7): 3902-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25646868

RESUMO

Four linear terarylene molecules (i) 4-nitro-terphenyl-4″-methanethiol (NTM), (ii) 4-nitro-terphenyl-3″,5″-dimethanethiol (NTD), (iii) ([1,1';4',1″] terphenyl-3,5-diyl)methanethiol (TM), and (iv) ([1,1';4',1″] terphenyl-3,5-diyl)dimethanethiol (TD) have been synthesized and their self-assembled monolayers (SAMs) have been obtained on polycrystalline gold. NTM and NTD SAMs have been characterized by X-ray photoelectron spectroscopy, Kelvin probe measurements, electrochemistry, and contact angle measurements. The terminal nitro group (-NO2) is irreversibly reduced to hydroxylamine (-NHOH), which can be reversibly turned into nitroso group (-NO). The direct comparison between NTM/NTD and TM/TD SAMs unambiguously shows the crucial influence of the nitro group on electrowetting properties of polycrystalline Au. The higher grade of surface tension related to NHOH has been successfully exploited for basic operations of digital µ-fluidics, such as droplets motion and merging.

16.
Phys Chem Chem Phys ; 17(3): 2001-11, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25475366

RESUMO

The unoccupied electronic structure of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin thick films deposited on SiO2/Si(100) native oxide surfaces has been thoroughly studied by combining the outcomes of near-edge X-ray absorption fine structure spectroscopy at the C, N, and F K-edges with those of scalar relativistic zeroth order regular approximation time-dependent density functional theory calculations carried out on isolated molecules. Both experimental and theoretical results concur to stress the electronic inertness of pristine porphyrin macrocycle based 1s(C)→π* and 1s(N)→π* transitions whose excitation energies are substantially unaffected upon fluorination. The obtained results complement those published by the same group about the occupied states of both molecules, thus providing the missing tile to get a thorough description of the halide decoration effects on the electronic structure of the tetrakis(phenyl)-porphyrin.

17.
Langmuir ; 30(39): 11591-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25222857

RESUMO

The studies on surface chemical gradients are constantly gaining interest both for fundamental studies and for technological implications in materials science, nanofluidics, dewetting, and biological systems. Here we report on a new approach that is very simple and very efficient, to fabricate surface chemical gradients of alkanethiols, which combines electrochemical desorption/partial readsorption, with the withdrawal of the surface from the solution. The gradient is then stabilized by adding a complementary thiol terminated with a hydroxyl group with a chain length comparable to desorbed thiols. This procedure allows us to fabricate a chemical gradient of the wetting properties and the substrate work-function along a few centimeters with a gradient slope higher than 5°/cm. Samples were characterized by cyclic voltammetry during desorption, static contact angle, XPS analysis, and Kelvin probe. Computer simulations based on the Dissipative Particle Dynamics methods were carried out considering a water droplet on a mixed SAM surface. The results help to rationalize the composition of the chemical gradient at different position on the Au surface.


Assuntos
Compostos de Sulfidrila/química , Adsorção , Eletroquímica , Ouro/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Propriedades de Superfície
18.
Anal Bioanal Chem ; 405(5): 1513-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23196748

RESUMO

Many of the properties of multi-material systems and relevant devices depend on the interfaces between the different components. This review focuses on characterization of the interfaces between intrinsically conducting polymers and inorganic materials consisting of metals and metal oxides. These materials are chosen because of their importance in several analytical applications. Although use of conducting polymers and metals or metal oxides in analytical systems, specifically in sensing, is well established, the number of novel materials used for analytical purposes is continuously increasing. This further increases the possible number of effective combinations of different materials within multicomponent systems. As a consequence, innovative characterization techniques have become as important as more conventional techniques. On the other hand, sophisticated characterisation techniques are increasingly widespread and, consequently, also readily accessible. This critical review is not an exhaustive discussion of all possible analytical techniques suitable for characterization of interfaces. It is, instead, limited to an overview of the most effective, relatively widespread techniques, emphasising their most significant recent advances. Critical analysis of the individual techniques is complemented by a few selected examples.

19.
Langmuir ; 27(8): 4713-20, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21405080

RESUMO

We report a study of the self-assembly of 1,4-benzenedimethanethiol monolayers on gold formed in n-hexane solution held at 60 °C for 30 min and in dark conditions. The valence band characteristics, the thickness of the layer, and the orientation of the molecules were analyzed at a synchrotron using high resolution photoelectron spectroscopy and near edge X-ray adsorption spectroscopy. These measurements unambiguously attest the formation of a single layer with molecules arranged in the upright position and presenting a free -SH group at the outer interface. Near edge X-ray absorption fine structure (NEXAFS) measurements suggest that the molecular axis is oriented at 24° with respect to the surface normal. In addition, valence band features could be successfully associated to specific molecular orbital contributions thanks to the comparison with theoretically calculated density of states projected on the different molecular units.

20.
Nanoscale ; 2(10): 2069-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20697613

RESUMO

We present a novel additive process, which allows the spatially controlled integration of nanoparticles (NPs) inside silicon surfaces. The NPs are placed between a conductive stamp and a silicon surface; by applying a bias voltage a SiO(2) layer grows underneath the stamp protrusions, thus embedding the particles. We report the successful nanoembedding of CoFe(2)O(4) nanoparticles patterned in lines, grids and logic structures.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Dióxido de Silício/química , Silício/química , Catálise , Cobalto/química , Condutividade Elétrica , Eletrônica , Compostos Férricos/química , Teste de Materiais , Microscopia de Força Atômica/métodos , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA