Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 390: 114883, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31981640

RESUMO

Human-based in silico models are emerging as important tools to study the effects of integrating inward and outward ion channel currents to predict clinical proarrhythmic risk. The aims of this study were 2-fold: 1) Evaluate the capacity of an in silico model to predict QTc interval prolongation in the in vivo anesthetized cardiovascular guinea pig (CVGP) assay for new chemical entities (NCEs) and; 2) Determine if a translational pharmacokinetic/pharmacodynamic (tPKPD) model can improve the predictive capacity. In silico simulations for NCEs were performed using a population of human ventricular action potential (AP) models. PatchXpress® (PX) or high throughput screening (HTS) ion channel data from respectively n = 73 and n = 51 NCEs were used as inputs for the in silico population. These NCEs were also tested in the CVGP (n = 73). An M5 pruned decision tree-based regression tPKPD model was used to evaluate the concentration at which an NCE is liable to prolong the QTc interval in the CVGP. In silico results successfully predicted the QTc interval prolongation outcome observed in the CVGP with an accuracy/specificity of 85%/73% and 75%/77%, when using PX and HTS ion channel data, respectively. Considering the tPKPD predicted concentration resulting in QTc prolongation (EC5%) increased accuracy/specificity to 97%/95% using PX and 88%/97% when using HTS. Our results support that human-based in silico simulations in combination with tPKPD modeling can provide correlative results with a commonly used early in vivo safety assay, suggesting a path toward more rapid NCE assessment with reduced resources, cycle time, and animal use.

2.
Clin Pharmacol Ther ; 107(1): 102-111, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31709525

RESUMO

This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration-sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model-based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm.

3.
Elife ; 82019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31868580

RESUMO

Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.

4.
Br J Pharmacol ; 176(19): 3819-3833, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31271649

RESUMO

BACKGROUND AND PURPOSE: Early identification of drug-induced cardiac adverse events is key in drug development. Human-based computer models are emerging as an effective approach, complementary to in vitro and animal models. Drug-induced shortening of the electromechanical window has been associated with increased risk of arrhythmias. This study investigates the potential of a cellular surrogate for the electromechanical window (EMw) for prediction of pro-arrhythmic cardiotoxicity, and its underlying ionic mechanisms, using human-based computer models. EXPERIMENTAL APPROACH: In silico drug trials for 40 reference compounds were performed, testing up to 100-fold the therapeutic concentrations (EFTPCmax ) and using a control population of human ventricular action potential (AP) models, optimised to capture pro-arrhythmic ionic profiles. EMw was calculated for each model in the population as the difference between AP and Ca2+ transient durations at 90%. Drug-induced changes in the EMw and occurrence of repolarisation abnormalities (RA) were quantified. KEY RESULTS: Drugs with clinical risk of Torsade de Pointes arrhythmias induced a concentration-dependent EMw shortening, while safe drugs lead to increase or small change in EMw. Risk predictions based on EMw shortening achieved 90% accuracy at 10× EFTPCmax , whereas RA-based predictions required 100× EFTPCmax to reach the same accuracy. As it is dependent on Ca2+ transient, the EMw was also more sensitive than AP prolongation in distinguishing between pure hERG blockers and multichannel compounds also blocking the calcium current. CONCLUSION AND IMPLICATIONS: The EMw is an effective biomarker for in silico predictions of drug-induced clinical pro-arrhythmic risk, particularly for compounds with multichannel blocking action.

9.
Front Physiol ; 8: 668, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955244

RESUMO

Early prediction of cardiotoxicity is critical for drug development. Current animal models raise ethical and translational questions, and have limited accuracy in clinical risk prediction. Human-based computer models constitute a fast, cheap and potentially effective alternative to experimental assays, also facilitating translation to human. Key challenges include consideration of inter-cellular variability in drug responses and integration of computational and experimental methods in safety pharmacology. Our aim is to evaluate the ability of in silico drug trials in populations of human action potential (AP) models to predict clinical risk of drug-induced arrhythmias based on ion channel information, and to compare simulation results against experimental assays commonly used for drug testing. A control population of 1,213 human ventricular AP models in agreement with experimental recordings was constructed. In silico drug trials were performed for 62 reference compounds at multiple concentrations, using pore-block drug models (IC50/Hill coefficient). Drug-induced changes in AP biomarkers were quantified, together with occurrence of repolarization/depolarization abnormalities. Simulation results were used to predict clinical risk based on reports of Torsade de Pointes arrhythmias, and further evaluated in a subset of compounds through comparison with electrocardiograms from rabbit wedge preparations and Ca2+-transient recordings in human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs). Drug-induced changes in silico vary in magnitude depending on the specific ionic profile of each model in the population, thus allowing to identify cell sub-populations at higher risk of developing abnormal AP phenotypes. Models with low repolarization reserve (increased Ca2+/late Na+ currents and Na+/Ca2+-exchanger, reduced Na+/K+-pump) are highly vulnerable to drug-induced repolarization abnormalities, while those with reduced inward current density (fast/late Na+ and Ca2+ currents) exhibit high susceptibility to depolarization abnormalities. Repolarization abnormalities in silico predict clinical risk for all compounds with 89% accuracy. Drug-induced changes in biomarkers are in overall agreement across different assays: in silico AP duration changes reflect the ones observed in rabbit QT interval and hiPS-CMs Ca2+-transient, and simulated upstroke velocity captures variations in rabbit QRS complex. Our results demonstrate that human in silico drug trials constitute a powerful methodology for prediction of clinical pro-arrhythmic cardiotoxicity, ready for integration in the existing drug safety assessment pipelines.

10.
Heart Rhythm ; 14(11): 1704-1712, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28756098

RESUMO

BACKGROUND: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are in vitro models with the clear advantages of their human origin and suitability for human disease investigations. However, limitations include their incomplete characterization and variability reported in different cell lines and laboratories. OBJECTIVE: The purpose of this study was to investigate in silico ionic mechanisms potentially explaining the phenotypic variability of hiPSC-CMs in long QT syndrome type 3 (LQT3) and their response to antiarrhythmic drugs. METHODS: Populations of in silico hiPSC-CM models were constructed and calibrated for control (n = 1,463 models) and LQT3 caused by INaL channelopathy (n = 1,401 models), using experimental recordings for late sodium current (INaL) and action potentials (APs). Antiarrhythmic drug therapy was evaluated by simulating mexiletine and ranolazine multichannel effects. RESULTS: As in experiments, LQT3 hiPSC-CMs yield prolonged action potential duration at 90% repolarization (APD90) (+34.3% than controls) and large electrophysiological variability. LQT3 hiPSC-CMs with symptomatic APs showed overexpression of ICaL, IK1, and INaL, underexpression of IKr, and increased sensitivity to both drugs compared to asymptomatic LQT3 models. Simulations showed that both mexiletine and ranolazine corrected APD prolongation in the LQT3 population but also highlighted differences in drug response. Mexiletine stops spontaneous APs in more LQT3 hiPSC-CMs models than ranolazine (784/1,401 vs 53/1,401) due to its stronger action on INa. CONCLUSION: In silico simulations demonstrate our ability to recapitulate variability in LQT3 and control hiPSC-CM phenotypes, and the ability of mexiletine and ranolazine to reduce APD prolongation, in agreement with experiments. The in silico models also identify potential ionic mechanisms of phenotypic variability in LQT3 hiPSC-CMs, explaining APD prolongation in symptomatic vs asymptomatic LQT3 hiPSC-CMs.


Assuntos
Doença do Sistema de Condução Cardíaco/tratamento farmacológico , Células-Tronco Pluripotentes Induzidas/patologia , Síndrome do QT Longo/tratamento farmacológico , Mexiletina/farmacologia , Miócitos Cardíacos/patologia , Potenciais de Ação , Antiarrítmicos/farmacologia , Variação Biológica da População , Doença do Sistema de Condução Cardíaco/patologia , Doença do Sistema de Condução Cardíaco/fisiopatologia , Linhagem Celular , Simulação por Computador , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome do QT Longo/patologia , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
11.
Prog Biophys Mol Biol ; 120(1-3): 115-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26701222

RESUMO

Physiological variability manifests itself via differences in physiological function between individuals of the same species, and has crucial implications in disease progression and treatment. Despite its importance, physiological variability has traditionally been ignored in experimental and computational investigations due to averaging over samples from multiple individuals. Recently, modelling frameworks have been devised for studying mechanisms underlying physiological variability in cardiac electrophysiology and pro-arrhythmic risk under a variety of conditions and for several animal species as well as human. One such methodology exploits populations of cardiac cell models constrained with experimental data, or experimentally-calibrated populations of models. In this review, we outline the considerations behind constructing an experimentally-calibrated population of models and review the studies that have employed this approach to investigate variability in cardiac electrophysiology in physiological and pathological conditions, as well as under drug action. We also describe the methodology and compare it with alternative approaches for studying variability in cardiac electrophysiology, including cell-specific modelling approaches, sensitivity-analysis based methods, and populations-of-models frameworks that do not consider the experimental calibration step. We conclude with an outlook for the future, predicting the potential of new methodologies for patient-specific modelling extending beyond the single virtual physiological human paradigm.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiologia , Modelos Cardiovasculares , Calibragem , Humanos , Interface Usuário-Computador
12.
J Mol Cell Cardiol ; 96: 72-81, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26385634

RESUMO

INTRODUCTION: Hypertrophic cardiomyopathy (HCM) is a cause of sudden arrhythmic death, but the understanding of its pro-arrhythmic mechanisms and an effective pharmacological treatment are lacking. HCM electrophysiological remodelling includes both increased inward and reduced outward currents, but their role in promoting repolarisation abnormalities remains unknown. The goal of this study is to identify key ionic mechanisms driving repolarisation abnormalities in human HCM, and to evaluate anti-arrhythmic effects of single and multichannel inward current blocks. METHODS: Experimental ionic current, action potential (AP) and Ca(2+)-transient (CaT) recordings were used to construct populations of human non-diseased and HCM AP models (n=9118), accounting for inter-subject variability. Simulations were conducted for several degrees of selective and combined inward current block. RESULTS: Simulated HCM cardiomyocytes exhibited prolonged AP and CaT, diastolic Ca(2+) overload and decreased CaT amplitude, in agreement with experiments. Repolarisation abnormalities in HCM models were consistently driven by L-type Ca(2+) current (ICaL) re-activation, and ICaL block was the most effective intervention to normalise repolarisation and diastolic Ca(2+), but compromised CaT amplitude. Late Na(+) current (INaL) block partially abolished repolarisation abnormalities, with small impact on CaT. Na(+)/Ca(2+) exchanger (INCX) block effectively restored repolarisation and CaT amplitude, but increased Ca(2+) overload. Multichannel block increased efficacy in normalising repolarisation, AP biomarkers and CaT amplitude compared to selective block. CONCLUSIONS: Experimentally-calibrated populations of human AP models identify ICaL re-activation as the key mechanism for repolarisation abnormalities in HCM, and combined INCX, INaL and ICaL block as effective anti-arrhythmic therapies also able to partially reverse the HCM electrophysiological phenotype.


Assuntos
Potenciais de Ação , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/metabolismo , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/tratamento farmacológico , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/metabolismo , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Humanos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Trocador de Sódio e Cálcio/metabolismo
13.
Europace ; 18(9): 1287-98, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26622055

RESUMO

Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.


Assuntos
Cardiologia/métodos , Fármacos Cardiovasculares/uso terapêutico , Cardiopatias , Farmacologia/métodos , Pesquisa Médica Translacional/métodos , Animais , Biomarcadores/metabolismo , Técnicas de Imagem Cardíaca , Cardiotoxicidade , Fármacos Cardiovasculares/efeitos adversos , Comportamento Cooperativo , Difusão de Inovações , Técnicas Eletrofisiológicas Cardíacas , Cardiopatias/diagnóstico por imagem , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Cardiopatias/fisiopatologia , Humanos , Comunicação Interdisciplinar , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Valor Preditivo dos Testes , Prognóstico , Parcerias Público-Privadas
14.
Europace ; 16(3): 396-404, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569894

RESUMO

Atrial fibrillation (AF) incidence is high in end-stage renal disease (ESRD) patients, and haemodialysis (HD) session may induce paroxysmal AF episodes. Structural atrium remodelling is common in ESRD patients, moreover, HD session induces rapid plasma electrolytes and blood volume changes, possibly favouring arrhythmia onset. Therefore, HD session represents a unique model to study in vivo the mechanisms potentially inducing paroxysmal AF episodes. Here, we present the case report of a patient in which HD regularly induced paroxysmal AF. In four consecutive sessions, heart rate variability analysis showed a progressive reduction of low/high frequency ratio before the AF onset, suggesting a relative increase in vagal activity. Moreover, all AF episodes were preceded by a great increase of supraventricular ectopic beats. We applied computational modelling of cardiac cellular electrophysiology to these clinical findings, using plasma electrolyte concentrations and heart rate to simulate patient conditions at the beginning of HD session (pre-HD) and right before the AF onset (pre-AF), in a human atrial action potential model. Simulation results provided evidence of a slower depolarization and a shortened refractory period in pre-AF vs. pre-HD, and these effects were enhanced when adding acetylcholine effect. Paroxysmal AF episodes are induced by the presence of a trigger that acts upon a favourable substrate on the background of autonomic nervous system changes and in the described case report all these three elements were present. Starting from these findings, here we review the possible mechanisms leading to intradialytic AF onset.


Assuntos
Potenciais de Ação , Fibrilação Atrial/fisiopatologia , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Modelos Cardiovasculares , Miócitos Cardíacos , Animais , Simulação por Computador , Humanos
15.
Comput Math Methods Med ; 2014: 291598, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25587348

RESUMO

During haemodialysis (HD) sessions, patients undergo alterations in the extracellular environment, mostly concerning plasma electrolyte concentrations, pH, and volume, together with a modification of sympathovagal balance. All these changes affect cardiac electrophysiology, possibly leading to an increased arrhythmic risk. Computational modeling may help to investigate the impact of HD-related changes on atrial electrophysiology. However, many different human atrial action potential (AP) models are currently available, all validated only with the standard electrolyte concentrations used in experiments. Therefore, they may respond in different ways to the same environmental changes. After an overview on how the computational approach has been used in the past to investigate the effect of HD therapy on cardiac electrophysiology, the aim of this work has been to assess the current state of the art in human atrial AP models, with respect to the HD context. All the published human atrial AP models have been considered and tested for electrolytes, volume changes, and different acetylcholine concentrations. Most of them proved to be reliable for single modifications, but all of them showed some drawbacks. Therefore, there is room for a new human atrial AP model, hopefully able to physiologically reproduce all the HD-related effects. At the moment, work is still in progress in this specific field.


Assuntos
Potenciais de Ação , Átrios do Coração/fisiopatologia , Modelos Cardiovasculares , Diálise Renal/métodos , Acetilcolina/metabolismo , Biomarcadores/metabolismo , Cálcio/química , Simulação por Computador , Eletrólitos , Humanos , Concentração de Íons de Hidrogênio , Potássio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA