Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Clin Epigenetics ; 11(1): 110, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366403

RESUMO

OBJECTIVE: To compare DNA methylation in subjects positive vs negative for anti-citrullinated protein antibodies (ACPA), a key serological marker of rheumatoid arthritis (RA) risk. METHODS: With banked serum from a random subset (N = 3600) of a large general population cohort, we identified ACPA-positive samples and compared them to age- and sex-matched ACPA-negative controls. We used a custom-designed methylome panel to conduct targeted bisulfite sequencing of 5 million CpGs located in regulatory or hypomethylated regions of DNA from whole blood (red blood cell lysed). Using binomial regression models, we investigated the differentially methylated regions (DMRs) between ACPA-positive vs ACPA-negative subjects. An independent set of T cells from RA patients was used to "validate" the differentially methylated sites. RESULTS: We measured DNA methylation in 137 subjects, of whom 63 were ACPA-positive, 66 were ACPA-negative, and 8 had self-reported RA. We identified 1303 DMRs of relevance, of which one third (402) had underlying genetic effects. These DMRs were enriched in intergenic CpG islands (CGI) and CGI shore regions. Furthermore, the genes associated with these DMRs were enriched in pathways related to Epstein-Barr virus infection and immune response. In addition, 80 (38%) of 208 RA-specific DMRs were replicated in T cells from RA samples. CONCLUSIONS: Sequencing-based high-resolution methylome mapping revealed biologically relevant DNA methylation changes in asymptomatic individuals positive for ACPA that overlap with those seen in RA. Pathway analyses suggested roles for viral infections, which may represent the effect of environmental triggers upstream of disease onset.

2.
Front Immunol ; 10: 1625, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379830

RESUMO

Genetic mismatches in protein coding genes between allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipient and donor can elicit an alloimmunity response via peptides presented by the recipient HLA receptors as minor histocompatibility antigens (mHAs). While the impact of individual mHAs on allo-HSCT outcome such as graft-vs.-host and graft-vs.-leukemia effects has been demonstrated, it is likely that established mHAs constitute only a small fraction of all immunogenic non-synonymous variants. In the present study, we have analyzed the genetic mismatching in 157 exome-sequenced sibling allo-HSCT pairs to evaluate the significance of polymorphic HLA class I associated peptides on clinical outcome. We applied computational mismatch estimation approaches based on experimentally verified HLA ligands available in public repositories, published mHAs, and predicted HLA-peptide affinites, and analyzed their associations with chronic graft-vs.-host disease (cGvHD) grades. We found that higher estimated recipient mismatching consistently increased the risk of severe cGvHD, suggesting that HLA-presented mismatching influences the likelihood of long-term complications in the patient. Furthermore, computational approaches focusing on estimation of HLA-presentation instead of all non-synonymous mismatches indiscriminately may be beneficial for analysis sensitivity and could help identify novel mHAs.

3.
Environ Health Perspect ; 127(8): 87002, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393794

RESUMO

BACKGROUND: The sperm DNA methylation landscape is unique and critical for offspring health. If gamete-derived DNA methylation escapes reprograming in early embryos, epigenetic defects in sperm may be transmitted to the next generation. Current techniques to assess sperm DNA methylation show bias toward CpG-dense regions and do not target areas of dynamic methylation, those predicted to be environmentally sensitive and tunable regulatory elements. OBJECTIVES: Our goal was to assess variation in human sperm DNA methylation and design a targeted capture panel to interrogate the human sperm methylome. METHODS: To characterize variation in sperm DNA methylation, we performed whole genome bisulfite sequencing (WGBS) on an equimolar pool of sperm DNA from a wide cross section of 30 men varying in age, fertility status, methylenetetrahydrofolate reductase (MTHFR) genotype, and exposures. With our targeted capture panel, in individual samples, we examined the effect of MTHFR genotype ([Formula: see text] 677CC, [Formula: see text] 677TT), as well as high-dose folic acid supplementation ([Formula: see text], per genotype, before and after supplementation). RESULTS: Through WGBS we discovered nearly 1 million CpGs possessing intermediate methylation levels (20-80%), termed dynamic sperm CpGs. These dynamic CpGs, along with 2 million commonly assessed CpGs, were used to customize a capture panel for targeted interrogation of the human sperm methylome and test its ability to detect effects of altered folate metabolism. As compared with MTHFR 677CC men, those with the 677TT genotype (50% decreased MTHFR activity) had both hyper- and hypomethylation in their sperm. High-dose folic acid supplement treatment exacerbated hypomethylation in MTHFR 677TT men compared with 677CC. In both cases, [Formula: see text] of altered methylation was found in dynamic sperm CpGs, uniquely measured by our assay. DISCUSSION: Our sperm panel allowed the discovery of differential methylation following conditions affecting folate metabolism in novel dynamic sperm CpGs. Improved ability to examine variation in sperm DNA methylation can facilitate comprehensive studies of environment-epigenome interactions. https://doi.org/10.1289/EHP4812.

4.
Genome Biol ; 20(1): 133, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287004

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified hundreds of loci associated with coronary artery disease (CAD) and blood pressure (BP) or hypertension. Many of these loci are not linked to traditional risk factors, nor do they include obvious candidate genes, complicating their functional characterization. We hypothesize that many GWAS loci associated with vascular diseases modulate endothelial functions. Endothelial cells play critical roles in regulating vascular homeostasis, such as roles in forming a selective barrier, inflammation, hemostasis, and vascular tone, and endothelial dysfunction is a hallmark of atherosclerosis and hypertension. To test this hypothesis, we generate an integrated map of gene expression, open chromatin region, and 3D interactions in resting and TNFα-treated human endothelial cells. RESULTS: We show that genetic variants associated with CAD and BP are enriched in open chromatin regions identified in endothelial cells. We identify physical loops by Hi-C and link open chromatin peaks that include CAD or BP SNPs with the promoters of genes expressed in endothelial cells. This analysis highlights 991 combinations of open chromatin regions and gene promoters that map to 38 CAD and 92 BP GWAS loci. We validate one CAD locus, by engineering a deletion of the TNFα-sensitive regulatory element using CRISPR/Cas9 and measure the effect on the expression of the novel CAD candidate gene AIDA. CONCLUSIONS: Our data support an important role played by genetic variants acting in the vascular endothelium to modulate inter-individual risk in CAD and hypertension.


Assuntos
Doença da Artéria Coronariana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Sistemas CRISPR-Cas , Células Endoteliais/metabolismo , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Elementos Reguladores de Transcrição , Transcriptoma
5.
Genome Med ; 11(1): 31, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31122281

RESUMO

As epigenetic studies become more common and lead to new insights into health and disease, the return of individual epigenetic results to research participants, in particular in large-scale epigenomic studies, will be of growing importance. Members of the International Human Epigenome Consortium (IHEC) Bioethics Workgroup considered the potential ethical, legal, and social issues (ELSI) involved in returning epigenetic research results and incidental findings in order to produce a set of 'Points-to-consider' (P-t-C) for the epigenetics research community. These P-t-C draw on existing guidance on the return of genetic research results, while also integrating the IHEC Bioethics Workgroup's ELSI research on and discussion of the issues associated with epigenetic data as well as the experience of a return of results pilot study by the Personal Genome Project UK (PGP-UK). Major challenges include how to determine the clinical validity and actionability of epigenetic results, and considerations related to environmental exposures and epigenetic marks, including circumstances warranting the sharing of results with family members and third parties. Interdisciplinary collaboration and good public communication regarding epigenetic risk will be important to advance the return of results framework for epigenetic science.

7.
Nat Commun ; 10(1): 1262, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890717

RESUMO

Lys-27-Met mutations in histone 3 genes (H3K27M) characterize a subgroup of deadly gliomas and decrease genome-wide H3K27 trimethylation. Here we use primary H3K27M tumor lines and isogenic CRISPR-edited controls to assess H3K27M effects in vitro and in vivo. We find that whereas H3K27me3 and H3K27me2 are normally deposited by PRC2 across broad regions, their deposition is severely reduced in H3.3K27M cells. H3K27me3 is unable to spread from large unmethylated CpG islands, while H3K27me2 can be deposited outside these PRC2 high-affinity sites but to levels corresponding to H3K27me3 deposition in wild-type cells. Our findings indicate that PRC2 recruitment and propagation on chromatin are seemingly unaffected by K27M, which mostly impairs spread of the repressive marks it catalyzes, especially H3K27me3. Genome-wide loss of H3K27me3 and me2 deposition has limited transcriptomic consequences, preferentially affecting lowly-expressed genes regulating neurogenesis. Removal of H3K27M restores H3K27me2/me3 spread, impairs cell proliferation, and completely abolishes their capacity to form tumors in mice.


Assuntos
Neoplasias Encefálicas/genética , Cromatina/metabolismo , Glioblastoma/genética , Histonas/genética , Complexo Repressor Polycomb 2/metabolismo , Adolescente , Idoso , Animais , Neoplasias Encefálicas/patologia , Sistemas CRISPR-Cas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Ilhas de CpG/genética , Metilação de DNA/genética , Epigênese Genética , Feminino , Edição de Genes/métodos , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Células HEK293 , Código das Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Masculino , Metionina/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Neurogênese/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nat Commun ; 10(1): 1209, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872577

RESUMO

Sparse profiling of CpG methylation in blood by microarrays has identified epigenetic links to common diseases. Here we apply methylC-capture sequencing (MCC-Seq) in a clinical population of ~200 adipose tissue and matched blood samples (Ntotal~400), providing high-resolution methylation profiling (>1.3 M CpGs) at regulatory elements. We link methylation to cardiometabolic risk through associations to circulating plasma lipid levels and identify lipid-associated CpGs with unique localization patterns in regulatory elements. We show distinct features of tissue-specific versus tissue-independent lipid-linked regulatory regions by contrasting with parallel assessments in ~800 independent adipose tissue and blood samples from the general population. We follow-up on adipose-specific regulatory regions under (1) genetic and (2) epigenetic (environmental) regulation via integrational studies. Overall, the comprehensive sequencing of regulatory element methylomes reveals a rich landscape of functional variants linked genetically as well as epigenetically to plasma lipid traits.


Assuntos
Doenças Cardiovasculares/genética , Ilhas de CpG/genética , Epigênese Genética , Doenças Metabólicas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Tecido Adiposo/metabolismo , Adulto , Idoso , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/metabolismo , Metilação de DNA , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lipídeos/sangue , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos
9.
PLoS One ; 13(11): e0207250, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440012

RESUMO

Very long intergenic non-coding RNAs (vlincRNAs) are a novel class of long transcripts (~50 kb to 1 Mb) with cell type- or cancer-specific expression. We report the discovery and characterization of 256 vlincRNAs from a cohort of 64 primary childhood pre-B and pre-T acute lymphoblastic leukemia (cALL) samples, of which 61% are novel and specifically expressed in cALL. Validation was performed in 35 pre-B and pre-T cALL primary samples. We show that their expression is cALL immunophenotype and molecular subtype-specific and correlated with epigenetic modifications on their promoters, much like protein-coding genes. While the biological functions of these vlincRNAs are still unknown, our results suggest they could play a role in cALL etiology or progression.

10.
Nat Genet ; 50(10): 1375-1380, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30224643

RESUMO

Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations1-6. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas7,8. We identify a recurrently mutated CRE interacting with the ETV1 promoter affecting gene expression. ETV1 expression influences cell viability and is associated with patient survival. We further refine our understanding of the regulatory effects of copy-number variations, showing that RASL11A is targeted by a previously identified enhancer amplification1. This study reveals new insights into the complex genetic alterations driving tumor development, providing a paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant to cancer biology.

11.
Blood ; 132(19): 2040-2052, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30194254

RESUMO

To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10-10), 6q23.3 (rs1002658; P = 2.97 × 10-8), 11q23.1 (rs7111520; P = 1.44 × 10-11), 16p11.2 (rs6565176; P = 4.00 × 10-8), and 20q13.12 (rs2425752; P = 2.01 × 10-8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.

12.
Biometrics ; 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30168593

RESUMO

DNA methylation studies have enabled researchers to understand methylation patterns and their regulatory roles in biological processes and disease. However, only a limited number of statistical approaches have been developed to provide formal quantitative analysis. Specifically, a few available methods do identify differentially methylated CpG (DMC) sites or regions (DMR), but they suffer from limitations that arise mostly due to challenges inherent in bisulfite sequencing data. These challenges include: (1) that read-depths vary considerably among genomic positions and are often low; (2) both methylation and autocorrelation patterns change as regions change; and (3) CpG sites are distributed unevenly. Furthermore, there are several methodological limitations: almost none of these tools is capable of comparing multiple groups and/or working with missing values, and only a few allow continuous or multiple covariates. The last of these is of great interest among researchers, as the goal is often to find which regions of the genome are associated with several exposures and traits. To tackle these issues, we have developed an efficient DMC identification method based on Hidden Markov Models (HMMs) called "DMCHMM" which is a three-step approach (model selection, prediction, testing) aiming to address the aforementioned drawbacks. Our proposed method is different from other HMM methods since it profiles methylation of each sample separately, hence exploiting inter-CpG autocorrelation within samples, and it is more flexible than previous approaches by allowing multiple hidden states. Using simulations, we show that DMCHMM has the best performance among several competing methods. An analysis of cell-separated blood methylation profiles is also provided.

13.
Eur J Hum Genet ; 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206357

RESUMO

The Saguenay-Lac-Saint-Jean (SLSJ) region is located in northeastern Quebec and is known for its unique demographic history and founder effect. As founder populations are enriched with population-specific variants, we characterized the variants distribution in SLSJ and compared it with four European populations (Finnish, Sweden, United Kingdom and France), of which the Finnish population is another founder population. Targeted sequencing of the coding and non-coding immune regulatory regions of the SLSJ asthma familial cohort and the four European populations were performed. Rare and low-frequency coding and non-coding regulatory variants identified in the SLSJ population were then investigated for variant- and gene-level associations with asthma and allergy-related traits (eosinophil percentage, immunoglobulin (Ig) E levels and lung function). Our data showed that (1) rare or deleterious variants were not enriched in the two founder populations as compared with the three non-founder European populations; (2) a larger proportion of founder population-specific variants occurred with higher frequencies; and (3) low-frequency variants appeared to be more deleterious. Furthermore, a rare variant, rs1386931, located in the 3'-UTR of CXCR6 and intron of FYCO1 was found to be associated with eosinophil percentage. Gene-based analyses identified NRP2, MRPL44 and SERPINE2 to be associated with various asthma and allergy-related traits. Our study demonstrated the usefulness of using a founder population to identify new genes associated with asthma and allergy-related traits; thus better understand the genes and pathways implicated in pathophysiology.

14.
Sci Rep ; 8(1): 5396, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599509

RESUMO

Matching classical HLA alleles between donor and recipient is an important factor in avoiding adverse immunological effects in HSCT. Siblings with no differences in HLA alleles, either due to identical-by-state or identical-by-descent status, are considered to be optimal donors. We carried out a retrospective genomic sequence and SNP analysis of 336 fully HLA-A, -B, -DRB1 matched and 14 partially HLA-matched sibling HSCT pairs to determine the level of undetected mismatching within the MHC segment as well as to map their recombination sites. The genomic sequence of 34 genes locating in the MHC region revealed allelic mismatching at 1 to 8 additional genes in partially HLA-matched pairs. Also, fully matched pairs were found to have mismatching either at HLA-DPB1 or at non-HLA region within the MHC segment. Altogether, 3.9% of fully HLA-matched HSCT pairs had large genomic mismatching in the MHC segment. Recombination sites mapped to certain restricted locations. The number of mismatched nucleotides correlated with the risk of GvHD supporting the central role of full HLA matching in HSCT. High-density genome analysis revealed that fully HLA-matched siblings may not have identical MHC segments and even single allelic mismatching at any classical HLA gene often implies larger genomic differences along MHC.

15.
Nat Commun ; 9(1): 554, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29396438

RESUMO

The original version of this Article contained an error in the title, which was incorrectly given as 'APRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients'. This has now been corrected in both the PDF and HTML versions of the Article to read 'A PRDX1 mutant allele causes a MMACHC secondary epimutation in cblC patients'.

16.
Nat Commun ; 9(1): 67, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29302025

RESUMO

To date, epimutations reported in man have been somatic and erased in germlines. Here, we identify a cause of the autosomal recessive cblC class of inborn errors of vitamin B12 metabolism that we name "epi-cblC". The subjects are compound heterozygotes for a genetic mutation and for a promoter epimutation, detected in blood, fibroblasts, and sperm, at the MMACHC locus; 5-azacytidine restores the expression of MMACHC in fibroblasts. MMACHC is flanked by CCDC163P and PRDX1, which are in the opposite orientation. The epimutation is present in three generations and results from PRDX1 mutations that force antisense transcription of MMACHC thereby possibly generating a H3K36me3 mark. The silencing of PRDX1 transcription leads to partial hypomethylation of the epiallele and restores the expression of MMACHC. This example of epi-cblC demonstrates the need to search for compound epigenetic-genetic heterozygosity in patients with typical disease manifestation and genetic heterozygosity in disease-causing genes located in other gene trios.


Assuntos
Proteínas de Transporte/genética , Epistasia Genética , Erros Inatos do Metabolismo/genética , Mutação , Peroxirredoxinas/genética , Vitamina B 12/metabolismo , Alelos , Azacitidina/farmacologia , Sequência de Bases , Inibidores Enzimáticos/farmacologia , Saúde da Família , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Heterozigoto , Humanos , Masculino , Erros Inatos do Metabolismo/metabolismo , Linhagem , Sequenciamento Completo do Genoma
17.
Nat Genet ; 50(2): 259-269, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29358650

RESUMO

Pioneer transcription factors establish new cell-fate competence by triggering chromatin remodeling. However, many features of pioneer action, such as their kinetics and stability, remain poorly defined. Here, we show that Pax7, by opening a unique repertoire of enhancers, is necessary and sufficient for specification of one pituitary lineage. Pax7 binds its targeted enhancers rapidly, but chromatin remodeling and gene activation are slower. Enhancers opened by Pax7 show a loss of DNA methylation and acquire stable epigenetic memory, as evidenced by binding of nonpioneer factors after Pax7 withdrawal. This work shows that transient Pax7 expression is sufficient for stable specification of cell identity.

18.
Cell Rep ; 20(11): 2556-2564, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28903037

RESUMO

Multiple myeloma (MM) is a malignancy of plasma cells. Genome-wide association studies have shown that variation at 5q15 influences MM risk. Here, we have sought to decipher the causal variant at 5q15 and the mechanism by which it influences tumorigenesis. We show that rs6877329 G > C resides in a predicted enhancer element that physically interacts with the transcription start site of ELL2. The rs6877329-C risk allele is associated with reduced enhancer activity and lowered ELL2 expression. Since ELL2 is critical to the B cell differentiation process, reduced ELL2 expression is consistent with inherited genetic variation contributing to arrest of plasma cell development, facilitating MM clonal expansion. These data provide evidence for a biological mechanism underlying a hereditary risk of MM at 5q15.


Assuntos
Cromossomos Humanos Par 5/genética , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Mieloma Múltiplo/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Elongação da Transcrição/genética , Alelos , Diploide , Epigênese Genética , Epigenômica , Loci Gênicos , Humanos , Proteínas Nucleares/metabolismo , Mapeamento Físico do Cromossomo , Prognóstico , Ligação Proteica , Fatores de Risco , Elongação da Transcrição Genética , Resposta a Proteínas não Dobradas/genética
19.
Development ; 144(18): 3325-3335, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807899

RESUMO

Forelimbs (FLs) and hindlimbs (HLs) develop complex musculoskeletal structures that rely on the deployment of a conserved developmental program. Pitx1, a transcription factor gene with expression restricted to HL and absent from FL, plays an important role in generating HL features. The genomic mechanisms by which Pitx1 effects HL identity remain poorly understood. Here, we use expression profiling and analysis of direct Pitx1 targets to characterize the HL- and FL-restricted genetic programs in mouse and situate the Pitx1-dependent gene network within the context of limb-specific gene regulation. We show that Pitx1 is a crucial component of a narrow network of HL-restricted regulators, acting on a developmental program that is shared between FL and HL. Pitx1 targets sites that are in a similar chromatin state in FL and HL and controls expression of patterning genes as well as the chondrogenic program, consistent with impaired chondrogenesis in Pitx1-/- HL. These findings support a model in which multifactorial actions of a limited number of HL regulators redirect the generic limb development program in order to generate the unique structural features of the limb.


Assuntos
Membro Posterior/embriologia , Membro Posterior/metabolismo , Organogênese , Fatores de Transcrição Box Pareados/metabolismo , Animais , Sequência de Bases , Condrogênese/genética , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Membro Anterior/embriologia , Membro Anterior/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Loci Gênicos , Genoma , Proteínas de Homeodomínio/metabolismo , Camundongos , Organogênese/genética , Fatores de Transcrição SOX9/metabolismo
20.
Epigenetics ; 12(6): 433-440, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28387599

RESUMO

We undertook this study to identify DNA methylation signatures of three systemic autoimmune rheumatic diseases (SARDs), namely rheumatoid arthritis, systemic lupus erythematosus, and systemic sclerosis, compared to healthy controls. Using a careful design to minimize confounding, we restricted our study to subjects with incident disease and performed our analyses on purified CD4+ T cells, key effector cells in SARD. We identified differentially methylated (using the Illumina Infinium HumanMethylation450 BeadChip array) and expressed (using the Illumina TruSeq stranded RNA-seq protocol) sites between cases and controls, and investigated the biological significance of this SARD signature using gene annotation databases. We recruited 13 seropositive rheumatoid arthritis, 19 systemic sclerosis, 12 systemic lupus erythematosus subjects, and 8 healthy controls. We identified 33 genes that were both differentially methylated and expressed (26 over- and 7 under-expressed) in SARD cases versus controls. The most highly overexpressed gene was CD1C (log fold change in expression = 1.85, adjusted P value = 0.009). In functional analysis (Ingenuity Pathway Analysis), the top network identified was lipid metabolism, molecular transport, small molecule biochemistry. The top canonical pathways included the mitochondrial L-carnitine shuttle pathway (P = 5E-03) and PTEN signaling (P = 8E-03). The top upstream regulator was HNF4A (P = 3E-05). This novel SARD signature contributes to ongoing work to further our understanding of the molecular mechanisms underlying SARD and provides novel targets of interest.


Assuntos
Artrite Reumatoide/genética , Metilação de DNA/genética , Lúpus Eritematoso Sistêmico/genética , Doenças Reumáticas/genética , Escleroderma Sistêmico/genética , Adulto , Idoso , Antígenos CD1/biossíntese , Antígenos CD1/imunologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Linfócitos T CD4-Positivos/imunologia , Metilação de DNA/imunologia , Feminino , Regulação da Expressão Gênica/imunologia , Glicoproteínas/biossíntese , Glicoproteínas/imunologia , Fator 4 Nuclear de Hepatócito/biossíntese , Fator 4 Nuclear de Hepatócito/imunologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/biossíntese , Doenças Reumáticas/imunologia , Doenças Reumáticas/patologia , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA