Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4728, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354065

RESUMO

Understanding how diet and gut microbiota interact in the context of human health is a key question in personalized nutrition. Genome-scale metabolic networks and constraint-based modeling approaches are promising to systematically address this complex problem. However, when applied to nutritional questions, a major issue in existing reconstructions is the limited information about compounds in the diet that are metabolized by the gut microbiota. Here, we present AGREDA, an extended reconstruction of diet metabolism in the human gut microbiota. AGREDA adds the degradation pathways of 209 compounds present in the human diet, mainly phenolic compounds, a family of metabolites highly relevant for human health and nutrition. We show that AGREDA outperforms existing reconstructions in predicting diet-specific output metabolites from the gut microbiota. Using 16S rRNA gene sequencing data of faecal samples from Spanish children representing different clinical conditions, we illustrate the potential of AGREDA to establish relevant metabolic interactions between diet and gut microbiota.


Assuntos
Dieta , Microbioma Gastrointestinal/fisiologia , Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Criança , Fenômenos Fisiológicos da Nutrição Infantil , Dieta Mediterrânea , Fermentação , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Lens (Planta)/química , Valor Nutritivo , RNA Ribossômico 16S/genética , Espanha
2.
Molecules ; 26(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206736

RESUMO

Green tea can influence the gut microbiota by either stimulating the growth of specific species or by hindering the development of detrimental ones. At the same time, gut bacteria can metabolize green tea compounds and produce smaller bioactive molecules. Accordingly, green tea benefits could be due to beneficial bacteria or to microbial bioactive metabolites. Therefore, the gut microbiota is likely to act as middle man for, at least, some of the green tea benefits on health. Many health promoting effects of green tea seems to be related to the inter-relation between green tea and gut microbiota. Green tea has proven to be able to correct the microbial dysbiosis that appears during several conditions such as obesity or cancer. On the other hand, tea compounds influence the growth of bacterial species involved in inflammatory processes such as the release of LPS or the modulation of IL production; thus, influencing the development of different chronic diseases. There are many studies trying to link either green tea or green tea phenolic compounds to health benefits via gut microbiota. In this review, we tried to summarize the most recent research in the area.


Assuntos
Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Chá , Animais , Antioxidantes/farmacologia , Catequina/farmacologia , Disbiose/complicações , Disbiose/tratamento farmacológico , Humanos , Inflamação/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Fenóis/química , Fenóis/metabolismo , Polifenóis/farmacologia , Chá/química
3.
Nutrients ; 13(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199047

RESUMO

The gut microbiota has a profound effect on human health and is modulated by food and bioactive compounds. To study such interaction, in vitro batch fermentations are performed with fecal material, and some experimental designs may require that such fermentations be performed with previously frozen stools. Although it is known that freezing fecal material does not alter the composition of the microbial community in 16S rRNA gene amplicon and metagenomic sequencing studies, it is not known whether the microbial community in frozen samples could still be used for in vitro fermentations. To explore this, we undertook a pilot study in which in vitro fermentations were performed with fecal material from celiac, cow's milk allergic, obese, or lean children that was frozen (or not) with 20% glycerol. Before fermentation, the fecal material was incubated in a nutritious medium for 6 days, with the aim of giving the microbial community time to recover from the effects of freezing. An aliquot was taken daily from the stabilization vessel and used for the in vitro batch fermentation of lentils. The microbial community structure was significantly different between fresh and frozen samples, but the variation introduced by freezing a sample was always smaller than the variation among individuals, both before and after fermentation. Moreover, the potential functionality (as determined in silico by a genome-scaled metabolic reconstruction) did not differ significantly, possibly due to functional redundancy. The most affected genus was Bacteroides, a fiber degrader. In conclusion, if frozen fecal material is to be used for in vitro fermentation purposes, our preliminary analyses indicate that the functionality of microbial communities can be preserved after stabilization.


Assuntos
Fermentação , Congelamento , Microbioma Gastrointestinal , Animais , Bovinos , Criança , Fezes/microbiologia , Armazenamento de Alimentos , Microbioma Gastrointestinal/genética , Humanos , Masculino , Microbiota , Leite , Projetos Piloto , RNA Ribossômico 16S/genética
4.
Curr Res Food Sci ; 4: 336-344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124692

RESUMO

Personalized nutrition (PN) is seen as a potentially effective and affordable strategy for the prevention of non-communicable diseases (NCDs). In this study we aimed to evaluate the antioxidant and metabolic effect of a dietary supplement based on alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALC) in order to include this product in a novel PN service. The antioxidant properties of the commercial nutraceutical were investigated at physiological conditions (through in vitro digestion) and at mitochondrial conditions. The metabolic activity was assessed in a human pilot study using a Gas Chromatography-Mass Spectrometry (GC-MS) methodology in dried urine samples. The nutraceutical exerted an elevated antiradical activity and reducing capacity, especially at mitochondrial conditions, after in vitro digestion. This increase in mitochondrial activity was also evidenced in vivo by a significant increase in the urinary phosphate concentration (p â€‹= â€‹0.004). As pro-oxidant effect was reached with the concentration of 4 capsules, 2 capsules at the same time could be a reasonable dose. No adverse effects were recorded in vivo with this dose. Thus, although its metabolic effect was not so conclusive, ALA â€‹+ â€‹ALC combination might be beneficial as a dietary supplement for the prevention of the oxidative stress and an interesting dietary supplement to consider in large scale studies.

5.
Nat Protoc ; 16(7): 3186-3209, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34089022

RESUMO

Knowledge of the effect of foods on gut microbiota composition and functionality is expanding. To isolate the effect of single foods and/or single nutrients (i.e., fiber, polyphenols), this protocol describes an in vitro batch fermentation procedure to be carried out after an in vitro gastrointestinal digestion. Therefore, this is an extension of the previous protocol described by Brodkorb et al. (2019) for studying in vitro digestion. The current protocol uses an oligotrophic fermentation medium with peptone and a high concentration of fecal inoculum from human fecal samples both to provide the microbiota and as the main source of nutrients for the bacteria. This protocol is recommended for screening work to be performed when many food samples are to be studied. It has been used successfully to study gut microbiota fermentation of different foodstuffs, giving insights into their functionality, community structure or ability to degrade particular substances, which can contribute to the development of personalized nutrition strategies. The procedure does not require a specific level of expertise. The protocol takes 4-6 h for preparation of fermentation tubes and 20 h for incubation.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Fermentação , Alimentos , Microbioma Gastrointestinal , Animais , Humanos , Análise de Componente Principal
6.
Antioxidants (Basel) ; 10(3)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805746

RESUMO

The human body is exposed to oxidative damage to cells and though it has some endogenous antioxidant systems, we still need to take antioxidants from our diet. The main dietary source of antioxidants is vegetables due to their content of different bioactive molecules. However, there are usually other components of the diet, such as foods of animal origin, that are not often linked to antioxidant capacity. Still, these foods are bound to exert some antioxidant capacity thanks to molecules released during gastrointestinal digestion and gut microbial fermentation. In this work, the antioxidant capacity of 11 foods of animal origin has been studied, submitted to different culinary techniques and to an in vitro digestion and gut microbial fermentation. Results have shown how dairy products potentially provide the highest antioxidant capacity, contributing to 60% of the daily antioxidant capacity intake. On the other hand, most of the antioxidant capacity was released during gut microbial fermentation (90-98% of the total antioxidant capacity). Finally, it was found that the antioxidant capacity of the studied foods was much higher than that reported by other authors. A possible explanation is that digestion-fermentation pretreatment allows for a higher extraction of antioxidant compounds and their transformation by the gut microbiota. Therefore, although foods of animal origin cannot be compared to vegetables in the concentration of antioxidant molecules, the processes of digestion and fermentation can provide some, giving animal origin food some qualities that could have been previously unappreciated.

7.
Public Health Nutr ; 24(12): 3818-3824, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33902787

RESUMO

OBJECTIVE: Polyphenols are antioxidant compounds with an impact on different health factors. Thus, it is important to have precise tools to estimate the intake of polyphenols. This study focuses on the development of an intuitive tool to estimating the intake of dietary total polyphenols. DESIGN: The tool was developed in a spreadsheet to improve accessibility and use. It is divided into six different meals for each of the 7 d with a similar format to 24-h diet recalls. The total polyphenol values of 302 foods were included and the possibility of own values. SETTING: Framework of the European project Stance4Health, Granada, Spain. PARTICIPANTS: This tool was tested on 90 participants in different stages of life (girls, women and pregnant women). Ages ranged from 10 to 35 years. RESULTS: The total polyphenol intake obtained was of 1790 ± 629 mg polyphenols/d. The highest consumption of polyphenols was observed in pregnant women (2064 mg/d). Polyphenols intake during the weekend was lower for the three groups compared to the days of the week. The results were comparable with those of other studies. CONCLUSIONS: The current tool allows the estimation of the total intake of polyphenols in the diet in a fast and easy way. The tool will be used as a basis for a future mobile application.

8.
Antioxidants (Basel) ; 9(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371445

RESUMO

The antioxidant capacity of foods is essential to complement the body's own endogenous antioxidant systems. The main antioxidant foods in the regular diet are those of plant origin. Although every kind of food has a different antioxidant capacity, thermal processing or cooking methods also play a role. In this work, the antioxidant capacity of 42 foods of vegetable origin was evaluated after in vitro digestion and fermentation. All foods were studied both raw and after different thermal processing methods, such as boiling, grilling roasting, frying, toasting and brewing. The cooking methods had an impact on the antioxidant capacity of the digested and fermented fractions, allowing the release and transformation of antioxidant compounds. In general, the fermented fraction accounted for up to 80-98% of the total antioxidant capacity. The most antioxidant foods were cocoa and legumes, which contributed to 20% of the daily antioxidant capacity intake. Finally, it was found that the antioxidant capacity of the studied foods was much higher than those reported by other authors since digestion-fermentation pretreatment allows for a higher extraction of antioxidant compounds and their transformation by the gut microbiota.

9.
Food Chem ; 316: 126309, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32059165

RESUMO

Melanoidins are an important component of the human diet (average consumption 10 g/day), which escape gastrointestinal digestion and are fermented by the gut microbiota. In this study melanoidins from different food sources (coffee, bread, beer, balsamic vinegar, sweet wine, biscuit, chocolate, and breakfast cereals) were submitted to an in vitro digestion and fermentation process, and their bioactivity was assessed. Some melanoidins were extensively used by gut microbes, increasing production of short chain fatty acids (mainly acetate and lactate) and favoring growth of the beneficial genera Bifidobacterium (bread crust, pilsner and black beers, chocolate and sweet wine melanoidins) and Faecalibacterium (biscuit melanoidins). Quantification of individual phenolic compounds after in vitro fermentation allowed their identification as microbial metabolites or phenolics released from the melanoidins backbone (specially pyrogallol, 2-(3,4-dihydroxyphenyl)acetic and 3-(3,4-dihydroxyphenyl)propionic acids). Our results also showed that antioxidant capacity of melanoidins is affected by gut microbiota fermentation.


Assuntos
Microbioma Gastrointestinal , Polímeros/metabolismo , Antioxidantes/análise , Antioxidantes/metabolismo , Bifidobacterium/metabolismo , Dieta , Fermentação
10.
Sci Total Environ ; 717: 137247, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32092806

RESUMO

Spent coffee grounds (SCG) are a bioresidue generated in large amounts worldwide, which could be employed as either fresh or transformed organic soil amendment, by means of different treatments in order to improve its agronomic qualities. An in vitro experiment was conducted in order to evaluate the effect of using different bioamendments derived from spent coffee grounds (SCG) on biomass and Zn, Cu and Fe content of lettuces. Application of 7.5% (w/w) fresh SCG, vermicompost, compost, biochars (at 270 and 400 °C; pyrolysis), SCG washed with ethanol and water, and hydrolysed SCG was carried out in an agricultural soil (Cambic Calcisol). In order to compare with conventional agriculture, the addition of NPK fertilizer was also assessed. Only vermicompost and biochar at 400 °C overcome the growth limitation of SCG. However, these treatments diminished Zn, Cu and Fe concentrations in lettuce probably due to the destruction (microbial degradation/thermal treatment) of natural chelating components (polyphenols). Increase in mineral content was observed in those treatments that did not completely eliminate polyphenols. NPK fertilizer gave rise to lettuces with higher biomass but lower micronutrients content. The results lead us to the possible solution for the use of SCG as organic amendment by vermicomposting and biocharization in order to eliminate toxicity.


Assuntos
Café , Solo , Agricultura , Carvão Vegetal , Quelantes , Compostagem , Fertilizantes
11.
Food Chem ; 313: 126156, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31931426

RESUMO

Low calorie foods are products designed to replace complete meals or to control snacking in many hypocaloric diets. These products provide many nutrients to the human diet, but little is known about their mineral elements composition. Here we study the mineral profile of weight loss related products, including the analysis of 22 elements (As, Ba, Be, Bi, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, P, Pb, Th, Tl, Sb, U, V, Y and Zn) in 73 commercial products marketed in Spain. In general a portion of these products provide up to 20-30% of the daily dietary reference intake of essential trace minerals like Cr or Mo. On the contrary, some of these foods have large concentrations of toxic minerals like As, Cd or Pb. In fact, the intake of those products with higher concentrations of toxic elements during a weight loss program could pose a risk to human health.


Assuntos
Fármacos Antiobesidade/química , Dieta Redutora , Contaminação de Alimentos/análise , Minerais/análise , Fármacos Antiobesidade/análise , Análise de Alimentos , Humanos , Metais/análise , Nível de Efeito Adverso não Observado , Medição de Risco , Espanha , Oligoelementos/análise
12.
Food Res Int ; 121: 514-523, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108776

RESUMO

Vegetables are health-promoting foods due to their content on a wide range of phytochemicals, being involved in antioxidant protection. However, such bioactivity can be modified during cooking and also along the digestion-fermentation process. Thus, the aim of the paper is to establish a relation among the type of processing (raw, boiled, steamed, grilled, roasted, and fried), time of processing (raw, usual time and well-done), antioxidant capacity and the development of the Maillard reaction (measured though the analysis of furosine and HMF) of 23 widely consumed vegetables. Antioxidant capacity was measured with three methods (TEACABTS, TEACFRAP, TEACOH) after submitting vegetables to an in vitro digestion followed by and in vitro fermentation process. Furosine and HMF were useful indicators to control both cooking time and heat intensity of common vegetables, being correlated with antioxidant capacity. Those samples cooked with aggressive techniques (frying, grilling or breading) showed the higher antioxidant values.


Assuntos
Antioxidantes/análise , Culinária/métodos , Reação de Maillard , Verduras/química , Digestão , Fermentação , Análise de Alimentos , Microbioma Gastrointestinal , Temperatura Alta , Lisina/análogos & derivados , Lisina/análise , Valor Nutritivo , Fenóis/análise , Compostos Fitoquímicos/análise
13.
Food Chem ; 282: 1-8, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30711092

RESUMO

The element concentration in lettuces grouped in 5 categories (baby variety, cultivated in agricultural soils with low or high percentages of spent coffee grounds-SCG, without SCG and with NPK) were measured. Lettuces cultivated in agricultural soils amended with SCG had significantly higher levels of several essential (V, Fe, Co, V, and probably Mn and Zn) and toxic elements (Al and probably As), without reaching their toxicological limits. Additionally, blocking of N uptake and therefore plant biomass, and probably Cd absorption from agricultural soil was observed. Organic farming with SCG ameliorates element concentrations in lettuces vs. NPK fertilization. The linear correlations among element uptake and the amendment of SCG could be related with their chelation by some SCG components, such as melanoidins and with the decrease in the soil pH. In conclusion, the addition of SCG produces lettuces with higher element content.


Assuntos
Café/química , Fertilizantes/análise , Alface/metabolismo , Valor Nutritivo , Adsorção , Agricultura , Biomassa , Café/metabolismo , Concentração de Íons de Hidrogênio , Compostos Inorgânicos/análise , Compostos Inorgânicos/metabolismo , Alface/química , Alface/crescimento & desenvolvimento , Solo/química
14.
J Agric Food Chem ; 67(9): 2500-2509, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30724071

RESUMO

Coffee is one of the most consumed beverages around the world, and as a consequence, spent coffee grounds are a massively produced residue that is causing environmental problems. Reusing them is a major focus of interest presently. We extracted mannooligosaccharides (MOS) from spent coffee grounds and submitted them to an in vitro fermentation with human feces. Results obtained suggest that MOS are able to exert a prebiotic effect on gut microbiota by stimulating the growth of some beneficial genera, such as Barnesiella, Odoribacter, Coprococcus, Butyricicoccus, Intestinimonas, Pseudoflavonifractor, and Veillonella. Moreover, short-chain fatty acids (SCFA) production also increased in a dose-dependent manner. However, we observed that 5-(hydroxymethyl)furfural, furfural, and polyphenols (which are either produced or released from the spent coffee grounds matrix during hydrolysis) could have an inhibitory effect on other beneficial genera, such as Faecalibacterium, Ruminococcus, Blautia, Butyricimonas, Dialister, Collinsella, and Anaerostipes, which could negatively affect the prebiotic activity of MOS.


Assuntos
Coffea , Microbioma Gastrointestinal/efeitos dos fármacos , Manose/farmacologia , Oligossacarídeos/farmacologia , Extratos Vegetais/farmacologia , Sementes/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Café/química , Relação Dose-Resposta a Droga , Ácidos Graxos Voláteis/biossíntese , Fezes/microbiologia , Fermentação , Humanos , Extratos Vegetais/química , Prebióticos/administração & dosagem
15.
Food Chem ; 279: 252-259, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611488

RESUMO

Coffee is one of the most consumed beverages and has been linked to health in different studies. However, green and roasted coffees have different chemical composition and therefore their health properties might differ as well. Here, we study the effect of in vitro digestion-fermentation on the antioxidant capacity, phenolic profile, production of short-chain fatty acids (SCFAs), and gut microbiota community structure of green and roasted coffee brews. Roasted coffees showed higher antioxidant capacity than green coffees, with the highest level achieved in fermented samples. Polyphenol profile was similar between green and roasted coffees in regular coffee brews and the digested fraction, but very different after fermentation. Production of SCFAs was higher after fermentation of green coffee brews. Fermentation of coffee brews by human gut microbiota led to different community structure between green and roasted coffees. All these data suggest that green and roasted coffees behave as different types of food.


Assuntos
Café/química , Café/metabolismo , Microbioma Gastrointestinal , Antioxidantes/análise , Antioxidantes/metabolismo , Ácidos Graxos Voláteis/análise , Fermentação , Microbioma Gastrointestinal/genética , Humanos , Polifenóis/análise
16.
J Agric Food Chem ; 66(43): 11500-11509, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30346155

RESUMO

Cooking modifies food composition due to chemical reactions. Additionally, food composition shapes the human gut microbiota. Thus, the objective of this research was to unravel the effect of different food cooking methods on the structure and functionality of the gut microbiota. Common culinary techniques were applied to five foods, which were submitted to in vitro digestion-fermentation. Furosine, 5-(hydroxymethyl)furfural, and furfural were used as Maillard reaction indicators to control the heat treatment. Short-chain fatty acids production was quantified as indicator of healthy metabolic output. Gut microbial community structure was analyzed through 16S rRNA. Both food composition and cooking methods modified the microbiota composition and released short-chain fatty acids. In general, intense cooking technologies (roasting and grilling) increased the abundance of beneficial bacteria like Ruminococcus spp. or Bifidobacterium spp. compared to milder treatments (boiling). However, for some foods (banana or bread), intense cooking decreased the levels of healthy bacteria.


Assuntos
Culinária , Microbioma Gastrointestinal , Temperatura Alta , Bactérias/classificação , Grão Comestível , Fabaceae , Ácidos Graxos Voláteis/análise , Fermentação , Frutas , Furaldeído/análogos & derivados , Furaldeído/análise , Humanos , Lisina/análogos & derivados , Lisina/análise , Reação de Maillard , Carne , RNA Ribossômico 16S/genética , Verduras
17.
J Agric Food Chem ; 65(31): 6452-6459, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692261

RESUMO

Spent coffee grounds are a byproduct with a large production all over the world. The aim of this study was to explore the effects of a simulated digestion-fermentation treatment on hydrolyzed spent coffee grounds (HSCG) and to investigate the antioxidant properties of the digestion and fermentation products in the human hepatocellular carcinoma HepG2 cell line. The potentially bioaccessible (soluble) fractions exhibited high chemoprotective activity in HepG2 cells against oxidative stress. Structural analysis of both the indigestible (insoluble) and soluble material revealed partial hydrolysis and release of the lignin components in the potentially bioaccessible fraction following simulated digestion-fermentation. A high prebiotic activity as determined from the increase in Lactobacillus spp. and Bifidobacterium spp. and the production of short-chain fatty acids (SCFAs) following microbial fermentation of HSCG was also observed. These results pave the way toward the use of HSCG as a food supplement.


Assuntos
Antioxidantes/química , Coffea/química , Suplementos Nutricionais/análise , Prebióticos/análise , Resíduos/análise , Antioxidantes/metabolismo , Bifidobacterium/metabolismo , Coffea/microbiologia , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Células Hep G2 , Humanos , Hidrólise , Lactobacillus/metabolismo , Prebióticos/microbiologia , Sementes/química
18.
J Agric Food Chem ; 65(20): 4216-4222, 2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28474524

RESUMO

Polyphenols are bioactive substances of vegetal origin with a significant impact on human health. The assessment of polyphenol intake and excretion is therefore important. The Folin-Ciocalteu (F-C) method is the reference assay to measure polyphenols in foods as well as their excretion in urine. However, many substances can influence the method, making it necessary to conduct a prior cleanup using solid-phase extraction (SPE) cartridges. In this paper, we demonstrate the use of the Fast Blue BB reagent (FBBB) as a new tool to measure the excretion of polyphenols in urine. Contrary to F-C, FBBB showed no interference in urine, negating the time-consuming and costly SPE cleanup. In addition, it showed excellent linearity (r2 = 0.9997), with a recovery of 96.4% and a precision of 1.86-2.11%. The FBBB method was validated to measure the excretion of polyphenols in spot urine samples from Spanish children, showing a good correlation between polyphenol intake and excretion.


Assuntos
Técnicas de Química Analítica/métodos , Polifenóis/urina , Criança , Compostos de Diazônio/química , Feminino , Humanos , Masculino , Extratos Vegetais/química , Polifenóis/metabolismo
19.
J Agric Food Chem ; 64(8): 1823-30, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26878080

RESUMO

Soy milk is a health-promoting beverage of which consumption is steadily expanding. Different bioactivities have been associated with soy products such as antioxidant capacity, anti-inflammatory properties, or decrease of cancer development risk. These activities have been related to the presence of several compounds, including polyphenols and serine protease inhibitors, although factors influencing such activities have been scarcely studied. In this study, we have determined the antioxidant capacity (ABTS and FRAP methods measured with the global antioxidant response, GAR protocol), total phenolic content, serine protease inhibitory activity, and presence of heat damage indicators in commercial soy milks. Polyphenols were primarily responsible for the antioxidant capacity of soy milks, increasing their concentration after digestion. Glycation under heat treatment might be responsible for decreasing protease inhibitory activities in soy milks. The results obtained support a role for furosine, a known marker of Maillard reaction and glycation, as a potential indicator to monitor both thermal treatment and effects on protease inhibitory activities in soy milk. The contribution of soy milk consumption to the daily intake of antioxidants and serine protease inhibitory activities is discussed.


Assuntos
Polifenóis/química , Leite de Soja/química , Antioxidantes/química , Antioxidantes/metabolismo , Digestão , Manipulação de Alimentos , Glicosilação , Humanos , Reação de Maillard , Modelos Biológicos , Polifenóis/metabolismo , Leite de Soja/economia , Leite de Soja/metabolismo
20.
Foods ; 5(4)2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-28231180

RESUMO

Enteral formulas are foods designed for medical uses to feed patients who are unable to eat normally. They are prepared by mixing proteins, amino acids, carbohydrates and fats and submitted to sterilization. During thermal treatment, the Maillard reaction takes place through the reaction of animo acids with reducing sugars. Thus, although glutamine and arginine are usually added to improve the nutritional value of enteral formulas, their final concentration may vary. Thus, in the present paper the early, intermediate, and advanced states of the Maillard reaction were studied in model systems by measuring loss of free amino acids through the decrease of fluorescence intensity with o-phtaldialdehyde (OPA), 5-Hydroximethylfurfural (HMF), furfural, glucosylisomaltol, fluorescence, and absorbance at 420 nm. The systems were prepared by mixing glutamine or arginine with dextrinomaltose (similar ingredients to those used in special enteral formula), and heated at 100 °C, 120 °C and 140 °C for 0 to 30 min. The recorded changes in the concentration of furanic compounds was only useful for longer heating times of high temperatures, while absorbance and fluorescence measurements were useful in all the assayed conditions. In addition, easiness and sensitivity of absorbance and fluorescence make them useful techniques that could be implemented as indicators for monitoring the manufacture of special enteral formulas. Glucosylisomaltol is a useful indicator to monitor the manufacture of glutamine-enriched enteral formulas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...