Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 5(3): 693-702, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32134254

RESUMO

A novel hybrid plasmonic platform based on the synergetic combination of a molecularly imprinted polymer (MIP) thin film with Au nanoparticle (NPs) assemblies, noted as Au@MIP, was developed for surface-enhanced Raman scattering (SERS) spectroscopy recognition of polycyclic aromatic hydrocarbons (PAHs). While the MIP trapped the PAH close to the Au surface, the plasmonic NPs enhanced the molecule's Raman signal. The Au@MIP fabrication comprises a two-step procedure, first, the layer-by-layer deposition of Au NPs on glass and their further coating with a uniform MIP thin film. Profilometry analysis demonstrated that the thickness and homogeneity of the MIP film could be finely tailored by tuning different parameters such as prepolymerization time or spin-coating rate. Two different PAH molecules, pyrene or fluoranthene, were used as templates for the fabrication of pyrene- or fluoranthene-based Au@MIP substrates. The use of pyrene or fluoranthene, as the template molecule to fabricate the Au@MIP thin films, enabled its ultradetection in the nM regime with a 100-fold improvement compared with the nonimprinted plasmonic sensors (Au@NIPs). The SERS data analysis allowed to estimate the binding constant of the template molecule to the MIP. The selectivity of both pyrene- and fluoranthene-based Au@MIPs was analyzed against three PAHs of different sizes. The results displayed the important role of the template molecule used for the Au@MIPs fabrication in the selectivity of the system. Finally, the practical applicability of pyrene-based Au@MIPs was shown by performing the detection of pyrene in two real samples: creek water and seawater. The design and optimization of this type of plasmonic platform will pave the way for the detection of other relevant (bio)molecules in a broad range of fields such as environmental control, food safety, or biomedicine.

2.
ACS Nano ; 14(1): 28-117, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31478375

RESUMO

The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

3.
Acc Chem Res ; 52(7): 1855-1864, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31243968

RESUMO

For decades, plasmonic nanoparticles have been extensively studied due to their extraordinary properties, related to localized surface plasmon resonances. A milestone in the field has been the development of the so-called seed-mediated growth method, a synthetic route that provided access to an extraordinary diversity of metal nanoparticles with tailored size, geometry and composition. Such a morphological control came along with an exquisite definition of the optical response of plasmonic nanoparticles, thereby increasing their prospects for implementation in various fields. The susceptibility of surface plasmons to respond to small changes in the surrounding medium or to perturb (enhance/quench) optical processes in nearby molecules, has been exploited for a wide range of applications, from biomedicine to energy harvesting. However, the possibilities offered by plasmonic nanoparticles can be expanded even further by their careful assembly into either disordered or ordered structures, in 2D and 3D. The assembly of plasmonic nanoparticles gives rise to coupling/hybridization effects, which are strongly dependent on interparticle spacing and orientation, generating extremely high electric fields (hot spots), confined at interparticle gaps. Thus, the use of plasmonic nanoparticle assemblies as optical sensors have led to improving the limits of detection for a wide variety of (bio)molecules and ions. Importantly, in the case of highly ordered plasmonic arrays, other novel and unique optical effects can be generated. Indeed, new functional materials have been developed via the assembly of nanoparticles into highly ordered architectures, ranging from thin films (2D) to colloidal crystals or supercrystals (3D). The progress in the design and fabrication of 3D supercrystals could pave the way toward next generation plasmonic sensors, photocatalysts, optomagnetic components, metamaterials, etc. In this Account, we summarize selected recent advancements in the field of highly ordered 3D plasmonic superlattices. We first analyze their fascinating optical properties for various systems with increasing degrees of complexity, from an individual metal nanoparticle through particle clusters with low coordination numbers to disordered self-assembled structures and finally to supercrystals. We then describe recent progress in the fabrication of 3D plasmonic supercrystals, focusing on specific strategies but without delving into the forces governing the self-assembly process. In the last section, we provide an overview of the potential applications of plasmonic supercrystals, with a particular emphasis on those related to surface-enhanced Raman scattering (SERS) sensing, followed by a brief highlight of the main conclusions and remaining challenges.

4.
Dalton Trans ; 48(11): 3758-3767, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30810142

RESUMO

A simple procedure to obtain highly porous hydrophilic palladium nanodendrites in one-step is described. The synthetic strategy is based on the thermal reduction of a Pd precursor in the presence of a positively charged polyelectrolyte such as polyethylenimine (PEI). Advanced electron microscopy techniques combined with X-ray diffraction (XRD), thermogravimetry and BET analysis demonstrate the polycrystalline nature of the nanodendrites as well as their high porosity and active surface area, facilitating a better understanding of their unique morphology. Besides, catalytic studies performed using Raman scattering and UV-Vis spectroscopies revealed that the nanodendrites exhibit a superior performance as recyclable catalysts towards hydrogenation reaction compared to other noble metal nanoparticles.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29868499

RESUMO

Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Análise Espectral Raman/métodos , Animais , Proteínas de Bactérias/química , Humanos , Indóis/química , Indóis/isolamento & purificação , Ligação Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/citologia , Piocianina/química , Piocianina/isolamento & purificação
6.
Biomed Mater ; 13(2): 025017, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29068320

RESUMO

The use of statins in the field of bone regeneration is under current investigation due to the existing demand for non-toxic anabolic agents capable of enhancing bone formation in cases of substantial loss. Simvastatin, a coenzyme currently prescribed in clinics to inhibit cholesterol biosynthesis, has been proven to promote osteogenic differentiation by stimulating bone formation and inhibiting osteoclasts activity. We present the loading of simvastatin in mesoporous TiO2 thin films toward combining the pro-osteogenic properties of this molecule with the demonstrated bioactivity of titania. TiO2 thin films processing and characterization were carried out, as well as evaluation of MC3T3-E1 pre-osteoblasts viability when directly incubated with different concentrations of simvastatin, followed by the analysis of osteogenic activity promoted by simvastatin upon loading in the thin films. The accessible porosity of 36% quantified on the 95 ± 5 nm thick mesoporous thin films, together with pore diameters of 5.5 nm, necks between pores of 2.8 nm and interpore distances of 12 ± 2 nm allow the loading of the simvastatin molecule, as confirmed by FTIR spectroscopy. Simvastatin was found to promote MC3T3-E1 pre-osteoblasts viability at concentrations ≤0.01 g l-1, with a cytotoxicity threshold of 0.05 g l-1. We additionally found that film loadings with 0.001 g l-1 simvastatin promotes statistically higher MC3T3-E1 pre-osteoblast proliferation whereas a higher concentration of 0.01 g l-1 leads to statistically higher osteogenic activity (ALP synthesis), after 21 days of incubation, as compared to unloaded films. These results demonstrate the potential of simvastatin local administration based on bioactive mesoporous thin films to promote pro-osteogenic properties. By focusing this strategy on the coating of metallic prostheses, the supply of simvastatin to the target tissue can be favored and risks of systemic side effects will be reduced while enhancing the osteointegration of the implants.


Assuntos
Osteogênese , Sinvastatina/farmacologia , Titânio/química , Células 3T3 , Administração Oral , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Teste de Materiais , Camundongos , Osteoblastos/citologia , Porosidade , Sinvastatina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Nanoscale ; 9(43): 16645-16651, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-28825072

RESUMO

Shape control in metal-organic frameworks still remains a challenge. We propose a strategy based on the capping agent modulator method to control the shape of ZIF-8 nanocrystals. This approach requires the use of a surfactant, cetyltrimethylammonium bromide (CTAB), and a second capping agent, tris(hydroxymethyl)aminomethane (TRIS), to obtain ZIF-8 nanocrystals with morphology control in aqueous media. Semiempirical computational simulations suggest that both shape-inducing agents adsorb onto different surface facets of ZIF-8, thereby slowing down their crystal growth rates. While CTAB molecules preferentially adsorb onto the {100} facets, leading to ZIF-8 particles with cubic morphology, TRIS preferentially stabilizes the {111} facets, inducing the formation of octahedral crystals. Interestingly, the presence of both capping agents leads to nanocrystals with irregular shapes and higher index facets, such as hexapods and burr puzzles. Additionally, the combination of ZIF-8 nanocrystals with other materials is expected to impart additional properties due to the hybrid nature of the resulting nanocomposites. In the present case, the presence of CTAB and TRIS molecules as capping agents facilitates the synthesis of metal nanoparticle@ZIF-8 nanocomposites, due to synergistic effects which could be of use in a number of applications such as catalysis, gas sensing and storage.

8.
ACS Appl Mater Interfaces ; 9(31): 26372-26382, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28721722

RESUMO

Novel plasmonic thin films based on electrostatic layer-by-layer (LbL) deposition of citrate-stabilized Au nanoparticles (NPs) and ammonium pillar[5]arene (AP[5]A) have been developed. The supramolecular-induced LbL assembly of the plasmonic nanoparticles yields the formation of controlled hot spots with uniform interparticle distances. At the same time, this strategy allows modulating the density and dimensions of the Au aggregates, and therefore the optical response, on the thin film with the number of AuNP-AP[5]A deposition cycles. Characterization of the AuNP-AP[5]A hybrid platforms as a function of the deposition cycles was performed by means of visible-NIR absorption spectroscopy, and scanning electron and atomic force microscopies, showing larger aggregates with the number of cycles. Additionally, the surface enhanced Raman scattering efficiency of the resulting AuNP-AP[5]A thin films has been investigated for three different laser excitations (633, 785, and 830 nm) and using pyrene as Raman probe. The best performance was shown by the AuNP-AP[5]A film obtained with two deposition cycles ((AuNP-AP[5]A)2) when excited with a 785 laser line. The optical response and SERS efficiency of the thin films were also simulated using the M3 solver and employing computer aided design models built based on SEM images of the different films. The use of host molecules as building blocks to fabricate (AuNP-AP[5]A)2) films has enabled the ultradetection, in liquid and gas phase, of low molecular weight polyaromatic hydrocarbons, PAHs, with no affinity for gold but toward the hydrophobic AP[5]A cavity. Besides, these plasmonic platforms allowed achieving quantitative detection within certain concentration regimes. Finally, the multiplex sensing capabilities of the AuNP-AP[5]A)2 were evaluated for their ability to detect in liquid and gas phase three different PAHs.

9.
Nanomaterials (Basel) ; 7(6)2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587297

RESUMO

A new and promising biosurfactant extracted from corn steep liquor has been used for the green synthesis of gold and silver nanoparticles (NPs) in a one-step procedure induced by temperature. Most of the biosurfactants proposed in the literature are produced by pathogenic microorganisms; whereas the biosurfactant used in the current work was extracted from a liquid stream, fermented spontaneously by lactic acid bacteria, which are "generally recognized as safe" (GRAS) microorganisms. The reduction of a gold precursor in the presence of a biosurfactant gives rise to a mixture of nanospheres and nanoplates with distinct optical features. Moreover, the growth of nanoplates can be promoted by increasing the reaction temperature to 60 °C. In the case of silver, the biosurfactant just induces the formation of pseudo-spherical NPs. The biosurfactant plays a key role in the reduction of the metal precursor, as well as in the stabilization of the resulting NPs. Furthermore, the antimicrobial activity of the resulting silver colloids has been analyzed against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The biosurfactant stabilized NPs slightly increased the inhibition of E. coli in comparison with citrate stabilized Ag NPs. The use of this biosurfactant extracted from corn steep liquor for the synthesis of metal NPs contributes to enhancing the application of green technologies and increasing the utilization of clean, non-toxic and environmentally safe production processes. Therefore, it can help to reduce environmental impact, minimize waste and increase energy efficiency in the field of nanomaterials.

10.
J Colloid Interface Sci ; 502: 201-209, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28486141

RESUMO

We report here on the fabrication of a new example of nano-object that combines magnetic and plasmonic properties. The strategy is based on the electrostatic assembly of negatively charged gold nanorods (NIR-resonant) on positively charged silica-coated iron oxide nanoparticles. Silica coating of magnetic nanoparticles prevented iron oxide nanoparticles irreversible aggregation in water environment. Finally the stability of the nanocomposite in biological medium has been improved through a protein coating (BSA, bovine serum albumin). Morphological, optical and magnetic properties of the hybrid nanomaterials have been evaluated as well as its ability to be manipulated by an external magnetic field. Furthermore, temperature characterization upon NIR laser excitation has been performed in order to assess nanocomposite capability of increasing local environmental temperature. This nanomaterial could be used as a smart tool for photothermal treatment of cancerous lesions in order to maximize precision and efficacy of tissue heating upon laser stimulation by magnetically accumulating nanoparticles nearby the cancerous lesion, avoiding dispersion of the nanomaterial.


Assuntos
Antineoplásicos/química , Ouro/química , Nanopartículas de Magnetita/química , Nanocompostos/química , Nanotubos/química , Humanos , Lasers , Neoplasias/terapia , Tamanho da Partícula , Fototerapia/métodos , Soroalbumina Bovina/química , Dióxido de Silício/química , Propriedades de Superfície , Temperatura
11.
ACS Nano ; 11(5): 4631-4640, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28460167

RESUMO

Microbes produce bioactive chemical compounds to influence the physiology and growth of their neighbors, and our understanding of their biological activities may be enhanced by our ability to visualize such molecules in vivo. We demonstrate here the application of surface-enhanced Raman scattering spectroscopy for simultaneous detection of quorum-sensing-regulated pyocyanin and violacein, produced respectively by Pseudomonas aeruginosa and Chromobacterium violaceum bacterial colonies, grown as a coculture on agar-based plasmonic substrates. Our plasmonic approach allowed us to visualize the expression and spatial distribution of the microbial metabolites in the coculture taking place as a result of interspecies chemical interactions. By combining surface-enhanced Raman scattering spectroscopy with analysis of gene expression we provide insight into the chemical interplay occurring between the interacting bacterial species. This highly sensitive, cost-effective, and easy to implement approach allows spatiotemporal imaging of cellular metabolites in live microbial colonies grown on agar with no need for sample preparation, thereby providing a powerful tool for the analysis of microbial chemotypes.


Assuntos
Percepção de Quorum/fisiologia , Análise Espectral Raman/métodos , Antibacterianos/farmacologia , Bactérias , Biofilmes/crescimento & desenvolvimento , Chromobacterium/efeitos dos fármacos , Indóis , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina , Percepção de Quorum/efeitos dos fármacos , Análise Espaço-Temporal
12.
Nat Commun ; 8: 14925, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358039

RESUMO

Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals can be determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure-property correlations.

13.
Nanoscale ; 9(5): 2051-2058, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28112761

RESUMO

Establishing a definitive diagnosis of pneumonia using conventional tests is difficult and expensive. Lateral flow immunoassays (LFIAs) are an advantageous point of care (POC) test option, but they have some limitations in terms of detection and quantification. In this work we have developed a lateral flow immunoassay for the ultrasensitive detection of penumolysin employing plasmonic Surface-Enhanced Resonance Raman Scattering (SERRS) tag as labelled probe. The combination of Au@Ag core-shell nanoparticles as plasmonic platform and Rhodamine B Isothiocyanate as Raman reporter has allowed us to fabricate a SERRS tag with high efficiency and reliability. The limit of detection of the SERRS-based LFIA was 1 pg mL-1. This could be a strong foundation for a pneumonia diagnosis test based on pneumolysin detection.

14.
ACS Omega ; 1(2): 177-181, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27656688

RESUMO

It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single- or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.

15.
Nano Lett ; 16(10): 6311-6316, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27648834

RESUMO

Fano resonances are central features in the responses of many systems including atoms, molecules, and nanomaterials. They arise as a consequence of interferences between two channels, most frequently associated with two system modes. In plasmonic materials, Fano interferences between optical modes have been shown, experimentally and theoretically, to induce narrow features in their scattering spectra. By investigating individual silver-gold heterodimers, we first experimentally demonstrate that Fano interference is also a key effect in the optical absorption of plasmonic nano-objects, in agreement with theoretical predictions. Conversely to previously investigated systems, the two interacting modes at the origin of absorptive Fano effect are mostly localized on either one or the other dimer component. Experimental results were obtained by selectively monitoring the optical absorption of one dimer component using a two-color nonlinear time-resolved technique. This also opens the way to full optical far-field noncontact investigations of charge or energy exchanges between nano-objects with a spatial resolution much smaller than the optical wavelength.

16.
Nat Mater ; 15(11): 1203-1211, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27500808

RESUMO

Most bacteria in nature exist as biofilms, which support intercellular signalling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. As QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in situ, label-free detection of a QS signalling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.


Assuntos
Biofilmes , Imagem Molecular , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum , Análise Espectral Raman
17.
J Am Chem Soc ; 138(36): 11453-6, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27556588

RESUMO

Shape-controlled synthesis of metal nanoparticles (NPs) requires mechanistic understanding toward the development of modern nanoscience and nanotechnology. We demonstrate here an unconventional shape transformation of Au@Ag core-shell NPs (nanorods and nanocubes) into octahedral nanorattles via room-temperature galvanic replacement coupled with seeded growth. The corresponding morphological and chemical transformations were investigated in three dimensions, using state-of-the-art X-ray energy-dispersive spectroscopy (XEDS) tomography. The addition of a reducing agent (ascorbic acid) plays a key role in this unconventional mechanistic path, in which galvanic replacement is found to dominate initially when the shell is made of Ag, while seeded growth suppresses transmetalation when a composition of Au:Ag (∼60:40) is reached in the shell, as revealed by quantitative XEDS tomography. This work not only opens new avenues toward the shape control of hollow NPs beyond the morphology of sacrificial templates, but also expands our understanding of chemical transformations in nanoscale galvanic replacement reactions. The XEDS electron tomography study presented here can be generally applied to investigate a wide range of nanoscale morphological and chemical transformations.

18.
Small ; 12(29): 3935-43, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27273895

RESUMO

Hybrid nanostructures composed of metal nanoparticles and metal-organic frameworks (MOFs) have recently received increasing attention toward various applications due to the combination of optical and catalytic properties of nanometals with the large internal surface area, tunable crystal porosity and unique chemical properties of MOFs. Encapsulation of metal nanoparticles of well-defined shapes into porous MOFs in a core-shell type configuration can thus lead to enhanced stability and selectivity in applications such as sensing or catalysis. In this study, the encapsulation of single noble metal nanoparticles with arbitrary shapes within zeolitic imidazolate-based metal organic frameworks (ZIF-8) is demonstrated. The synthetic strategy is based on the enhanced interaction between ZIF-8 nanocrystals and metal nanoparticle surfaces covered by quaternary ammonium surfactants. High resolution electron microscopy and tomography confirm a complete core-shell morphology. Such a well-defined morphology allowed us to study the transport of guest molecules through the ZIF-8 porous shell by means of surface-enhanced Raman scattering by the metal cores. The results demonstrate that even molecules larger than the ZIF-8 aperture and pore size may be able to diffuse through the framework and reach the metal core.

19.
CrystEngComm ; 18(19): 3422-3427, 2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28496381

RESUMO

Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac)2) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

20.
J Phys Chem Lett ; 6(2): 230-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26263455

RESUMO

We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.


Assuntos
Celulose/química , Nanopartículas Metálicas/química , Paládio/química , Ácidos Borônicos/química , Catálise , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA