Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33408250

RESUMO

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.

2.
J Exp Med ; 218(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175106

RESUMO

As microbial therapeutics are increasingly being tested in diverse patient populations, it is essential to understand the host and environmental factors influencing the microbiome. Through analysis of 1,359 gut microbiome samples from 946 healthy donors of the Milieu Intérieur cohort, we detail how microbiome composition is associated with host factors, lifestyle parameters, and disease states. Using a genome-based taxonomy, we found biological sex was the strongest driver of community composition. Additionally, bacterial populations shift across decades of life (age 20-69), with Bacteroidota species consistently increased with age while Actinobacteriota species, including Bifidobacterium, decreased. Longitudinal sampling revealed that short-term stability exceeds interindividual differences. By accounting for these factors, we defined global shifts in the microbiomes of patients with non-gastrointestinal tumors compared with healthy donors. Together, these results demonstrated that the microbiome displays predictable variations as a function of sex, age, and disease state. These variations must be considered when designing microbiome-targeted therapies or interpreting differences thought to be linked to pathophysiology or therapeutic response.

3.
Br J Nutr ; : 1-29, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33298217

RESUMO

Host-microbial co-metabolism products are being increasingly recognized to play important roles in physiological processes. However, studies undertaking a comprehensive approach to consider host-microbial metabolic relationships remain scarce. Metabolomic analysis yielding detailed information regarding metabolites found in a given biological compartment holds promise for such an approach. This work aimed to explore the associations between host plasma metabolomic signatures and gut microbiota composition in healthy adults of the Milieu Intérieur study. For 846 subjects, gut microbiota composition was profiled through sequencing of the 16S rRNA gene in stools. Metabolomic signatures were generated through proton nuclear magnetic resonance analysis of plasma. The associations between metabolomic variables and α- and ß-diversity indexes and relative taxa abundances were tested using multi-adjusted partial Spearman correlations, PERMANOVAs, and MaAsLins, respectively. A Multiple testing correction was applied (Benjamini-Hochberg, 10%-FDR). Microbial richness was negatively associated with lipid-related signals and positively associated with amino acids, choline, creatinine, glucose, and citrate (-0.133 ≤ Spearman's ρ ≤ 0.126). Specific associations between metabolomic signals and abundances of taxa were detected (25 at the genus level and 19 at the species level): notably, numerous associations were observed for creatinine (positively associated with 11 species, and negatively associated with Faecalibacterium prausnitzii). This large-scale population-based study highlights metabolites associated with gut microbial features and provides new insights into the understanding of complex host-gut microbiota metabolic relationships. In particular, our results support the implication of a "gut-kidney axis". More studies providing a detailed exploration of these complex interactions, and their implications for host health are needed.

5.
Proc Natl Acad Sci U S A ; 117(24): 13626-13636, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32487729

RESUMO

Humans homozygous or hemizygous for variants predicted to cause a loss of function (LoF) of the corresponding protein do not necessarily present with overt clinical phenotypes. We report here 190 autosomal genes with 207 predicted LoF variants, for which the frequency of homozygous individuals exceeds 1% in at least one human population from five major ancestry groups. No such genes were identified on the X and Y chromosomes. Manual curation revealed that 28 variants (15%) had been misannotated as LoF. Of the 179 remaining variants in 166 genes, only 11 alleles in 11 genes had previously been confirmed experimentally to be LoF. The set of 166 dispensable genes was enriched in olfactory receptor genes (41 genes). The 41 dispensable olfactory receptor genes displayed a relaxation of selective constraints similar to that observed for other olfactory receptor genes. The 125 dispensable nonolfactory receptor genes also displayed a relaxation of selective constraints consistent with greater redundancy. Sixty-two of these 125 genes were found to be dispensable in at least three human populations, suggesting possible evolution toward pseudogenes. Of the 179 LoF variants, 68 could be tested for two neutrality statistics, and 8 displayed robust signals of positive selection. These latter variants included a known FUT2 variant that confers resistance to intestinal viruses, and an APOL3 variant involved in resistance to parasitic infections. Overall, the identification of 166 genes for which a sizeable proportion of humans are homozygous for predicted LoF alleles reveals both redundancies and advantages of such deficiencies for human survival.


Assuntos
Genética Humana , Mutação com Perda de Função , Alelos , Apolipoproteínas L/genética , Fucosiltransferases/genética , Variação Genética , Homozigoto , Humanos , Proteínas/genética , Cromossomos Sexuais/genética
6.
PLoS Genet ; 16(3): e1008686, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32168362

RESUMO

Identifying the factors that shape protein expression variability in complex multi-cellular organisms has primarily focused on promoter architecture and regulation of single-cell expression in cis. However, this targeted approach has to date been unable to identify major regulators of cell-to-cell gene expression variability in humans. To address this, we have combined single-cell protein expression measurements in the human immune system using flow cytometry with a quantitative genetics analysis. For the majority of proteins whose variability in expression has a heritable component, we find that genetic variants act in trans, with notably fewer variants acting in cis. Furthermore, we highlight using Mendelian Randomization that these variability-Quantitative Trait Loci might be driven by the cis regulation of upstream genes. This indicates that natural selection may balance the impact of gene regulation in cis with downstream impacts on expression variability in trans.


Assuntos
Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Alelos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Sistema Imunitário/metabolismo , Imunidade/genética , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Seleção Genética/genética
7.
PLoS One ; 15(1): e0225289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31961910

RESUMO

TYK2 belongs to the JAK protein tyrosine kinase family and mediates signaling of numerous antiviral and immunoregulatory cytokines (type I and type III IFNs, IL-10, IL-12, IL-22, IL-23) in immune and non-immune cells. After many years of genetic association studies, TYK2 is recognized as a susceptibility gene for some inflammatory and autoimmune diseases (AID). Seven TYK2 variants have been associated with AIDs in Europeans, and establishing their causality remains challenging. Previous work showed that a protective variant (P1104A) is hypomorphic and also a risk allele for mycobacterial infection. Here, we have studied two AID-associated common TYK2 variants: rs12720270 located in intron 7 and rs2304256, a non-synonymous variant in exon 8 that causes a valine to phenylalanine substitution (c.1084 G > T, Val362Phe). We found that this amino acid substitution does not alter TYK2 expression, catalytic activity or ability to relay signaling in EBV-B cell lines or in reconstituted TYK2-null cells. Based on in silico predictions that these variants may impact splicing of exon 8, we: i) analyzed TYK2 transcripts in genotyped EBV-B cells and in CRISPR/Cas9-edited cells, ii) measured splicing using minigene assays, and iii) performed eQTL (expression quantitative trait locus) analysis of TYK2 transcripts in primary monocytes and whole blood cells. Our results reveal that the two variants promote the inclusion of exon 8, which, we demonstrate, is essential for TYK2 binding to cognate receptors. In addition and in line with GTEx (Genetic Tissue Expression) data, our eQTL results show that rs2304256 mildly enhances TYK2 expression in whole blood. In all, these findings suggest that these TYK2 variants are not neutral but instead have a potential impact in AID.


Assuntos
Doenças Autoimunes/genética , Predisposição Genética para Doença , Inflamação/genética , TYK2 Quinase/genética , Alelos , Substituição de Aminoácidos/genética , Doenças Autoimunes/sangue , Doenças Autoimunes/patologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Citocinas/química , Citocinas/genética , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Genótipo , Humanos , Inflamação/sangue , Inflamação/patologia , Fenilalanina/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , TYK2 Quinase/sangue
8.
Curr Biol ; 29(23): 3974-3986.e4, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31735679

RESUMO

The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.


Assuntos
Grupo com Ancestrais do Continente Africano/genética , Grupo com Ancestrais Nativos do Continente Americano/genética , Grupo com Ancestrais do Continente Europeu/genética , Fluxo Gênico , Genoma Humano , Região do Caribe , América Central , Humanos , América do Norte , América do Sul
9.
Microbiome ; 7(1): 130, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519223

RESUMO

BACKGROUND: The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20-69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition. RESULTS: Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics. CONCLUSION: In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01699893.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Adulto , Idoso , Bactérias/isolamento & purificação , Estudos de Coortes , Demografia , Meio Ambiente , Feminino , Voluntários Saudáveis , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Curr Biol ; 29(17): 2926-2935.e4, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402299

RESUMO

African rainforests support exceptionally high biodiversity and host the world's largest number of active hunter-gatherers [1-3]. The genetic history of African rainforest hunter-gatherers and neighboring farmers is characterized by an ancient divergence more than 100,000 years ago, together with recent population collapses and expansions, respectively [4-12]. While the demographic past of rainforest hunter-gatherers has been deeply characterized, important aspects of their history of genetic adaptation remain unclear. Here, we investigated how these groups have adapted-through classic selective sweeps, polygenic adaptation, and selection since admixture-to the challenging rainforest environments. To do so, we analyzed a combined dataset of 566 high-coverage exomes, including 266 newly generated exomes, from 14 populations of rainforest hunter-gatherers and farmers, together with 40 newly generated, low-coverage genomes. We find evidence for a strong, shared selective sweep among all hunter-gatherer groups in the regulatory region of TRPS1-primarily involved in morphological traits. We detect strong signals of polygenic adaptation for height and life history traits such as reproductive age; however, the latter appear to result from pervasive pleiotropy of height-associated genes. Furthermore, polygenic adaptation signals for functions related to responses of mast cells to allergens and microbes, the IL-2 signaling pathway, and host interactions with viruses support a history of pathogen-driven selection in the rainforest. Finally, we find that genes involved in heart and bone development and immune responses are enriched in both selection signals and local hunter-gatherer ancestry in admixed populations, suggesting that selection has maintained adaptive variation in the face of recent gene flow from farmers.


Assuntos
Adaptação Biológica , Fluxo Gênico , Estilo de Vida , Herança Multifatorial , Camarões , Fazendeiros , Gabão , Genoma Humano , Humanos , Floresta Úmida , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Uganda
11.
Proc Natl Acad Sci U S A ; 116(21): 10430-10434, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068474

RESUMO

The human genetic basis of tuberculosis (TB) has long remained elusive. We recently reported a high level of enrichment in homozygosity for the common TYK2 P1104A variant in a heterogeneous cohort of patients with TB from non-European countries in which TB is endemic. This variant is homozygous in ∼1/600 Europeans and ∼1/5,000 people from other countries outside East Asia and sub-Saharan Africa. We report a study of this variant in the UK Biobank cohort. The frequency of P1104A homozygotes was much higher in patients with TB (6/620, 1%) than in controls (228/114,473, 0.2%), with an odds ratio (OR) adjusted for ancestry of 5.0 [95% confidence interval (CI): 1.96-10.31, P = 2 × 10-3]. Conversely, we did not observe enrichment for P1104A heterozygosity, or for TYK2 I684S or V362F homozygosity or heterozygosity. Moreover, it is unlikely that more than 10% of controls were infected with Mycobacterium tuberculosis, as 97% were of European genetic ancestry, born between 1939 and 1970, and resided in the United Kingdom. Had all of them been infected, the OR for developing TB upon infection would be higher. These findings suggest that homozygosity for TYK2 P1104A may account for ∼1% of TB cases in Europeans.


Assuntos
TYK2 Quinase/genética , Tuberculose/genética , África ao Sul do Saara , Estudos de Casos e Controles , Estudos de Coortes , Extremo Oriente , Feminino , Variação Genética/genética , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/patogenicidade , Razão de Chances , Reino Unido
12.
BMC Genomics ; 20(1): 179, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30841922

RESUMO

BACKGROUND: Bioko is one of the few islands that exist around Africa, the most genetically diverse continent on the planet. The native Bantu-speaking inhabitants of Bioko, the Bubi, are believed to have colonized the island about 2000 years ago. Here, we sequenced the genome of thirteen Bubi individuals at high coverage and analysed their sequences in comparison to mainland populations from the Gulf of Guinea. RESULTS: We found that, genetically, the closest mainland population to the Bubi are Bantu-speaking groups from Angola instead the geographically closer groups from Cameroon. The Bubi possess a lower proportion of rainforest hunter-gatherer (RHG) ancestry than most other Bantu-speaking groups. However, their RHG component most likely came from the same source and could have reached them by gene flow from the mainland after island settlement. By studying identity by descent (IBD) genomic blocks and runs of homozygosity (ROHs), we found evidence for a significant level of genetic isolation among the Bubi, isolation that can be attributed to the island effect. Additionally, as this population is known to have one of the highest malaria incidence rates in the world we analysed their genome for malaria-resistant alleles. However, we were unable to detect any specific selective sweeps related to this disease. CONCLUSIONS: By describing their dispersal to the Atlantic islands, the genomic characterization of the Bubi contributes to the understanding of the margins of the massive Bantu migration that shaped all Sub-Saharan African populations.


Assuntos
Genômica , Migração Humana , Ilhas , Idioma , África , Animais , Oceano Atlântico , Homozigoto
13.
Am J Hum Genet ; 104(3): 553-561, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827499

RESUMO

The hemoglobin ßS sickle mutation is a textbook case in which natural selection maintains a deleterious mutation at high frequency in the human population. Homozygous individuals for this mutation develop sickle-cell disease, whereas heterozygotes benefit from higher protection against severe malaria. Because the overdominant ßS allele should be purged almost immediately from the population in the absence of malaria, the study of the evolutionary history of this iconic mutation can provide important information about the history of human exposure to malaria. Here, we sought to increase our understanding of the origins and time depth of the ßS mutation in populations with different lifestyles and ecologies, and we analyzed the diversity of HBB in 479 individuals from 13 populations of African farmers and rainforest hunter-gatherers. Using an approximate Bayesian computation method, we estimated the age of the ßS allele while explicitly accounting for population subdivision, past demography, and balancing selection. When the effects of balancing selection are taken into account, our analyses indicate a single emergence of ßS in the ancestors of present-day agriculturalist populations ∼22,000 years ago. Furthermore, we show that rainforest hunter-gatherers have more recently acquired the ßS mutation from the ancestors of agriculturalists through adaptive gene flow during the last ∼6,000 years. Together, our results provide evidence for a more ancient exposure to malarial pressures among the ancestors of agriculturalists than previously appreciated, and they suggest that rainforest hunter-gatherers have been increasingly exposed to malaria during the last millennia.


Assuntos
Adaptação Fisiológica , Grupo com Ancestrais do Continente Africano/genética , Evolução Biológica , Genética Populacional , Hemoglobina Falciforme/genética , Malária/epidemiologia , Seleção Genética , África/epidemiologia , Agricultura , Anemia Falciforme/genética , Anemia Falciforme/patologia , Florestas , Fluxo Gênico , Humanos , Incidência , Malária/genética , Malária/parasitologia , Floresta Úmida
14.
Proc Natl Acad Sci U S A ; 116(3): 950-959, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30591557

RESUMO

Computational analyses of human patient exomes aim to filter out as many nonpathogenic genetic variants (NPVs) as possible, without removing the true disease-causing mutations. This involves comparing the patient's exome with public databases to remove reported variants inconsistent with disease prevalence, mode of inheritance, or clinical penetrance. However, variants frequent in a given exome cohort, but absent or rare in public databases, have also been reported and treated as NPVs, without rigorous exploration. We report the generation of a blacklist of variants frequent within an in-house cohort of 3,104 exomes. This blacklist did not remove known pathogenic mutations from the exomes of 129 patients and decreased the number of NPVs remaining in the 3,104 individual exomes by a median of 62%. We validated this approach by testing three other independent cohorts of 400, 902, and 3,869 exomes. The blacklist generated from any given cohort removed a substantial proportion of NPVs (11-65%). We analyzed the blacklisted variants computationally and experimentally. Most of the blacklisted variants corresponded to false signals generated by incomplete reference genome assembly, location in low-complexity regions, bioinformatic misprocessing, or limitations inherent to cohort-specific private alleles (e.g., due to sequencing kits, and genetic ancestries). Finally, we provide our precalculated blacklists, together with ReFiNE, a program for generating customized blacklists from any medium-sized or large in-house cohort of exome (or other next-generation sequencing) data via a user-friendly public web server. This work demonstrates the power of extracting variant blacklists from private databases as a specific in-house but broadly applicable tool for optimizing exome analysis.


Assuntos
Bases de Dados de Ácidos Nucleicos , Exoma , Variação Genética , Genoma Humano , Análise de Sequência de DNA , Software , Estudos de Coortes , Feminino , Humanos , Masculino
15.
Sci Immunol ; 3(30)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578351

RESUMO

Hundreds of patients with autosomal recessive, complete IL-12p40 or IL-12Rß1 deficiency have been diagnosed over the last 20 years. They typically suffer from invasive mycobacteriosis and, occasionally, from mucocutaneous candidiasis. Susceptibility to these infections is thought to be due to impairments of IL-12-dependent IFN-γ immunity and IL-23-dependent IL-17A/IL-17F immunity, respectively. We report here patients with autosomal recessive, complete IL-12Rß2 or IL-23R deficiency, lacking responses to IL-12 or IL-23 only, all of whom, unexpectedly, display mycobacteriosis without candidiasis. We show that αß T, γδ T, B, NK, ILC1, and ILC2 cells from healthy donors preferentially produce IFN-γ in response to IL-12, whereas NKT cells and MAIT cells preferentially produce IFN-γ in response to IL-23. We also show that the development of IFN-γ-producing CD4+ T cells, including, in particular, mycobacterium-specific TH1* cells (CD45RA-CCR6+), is dependent on both IL-12 and IL-23. Last, we show that IL12RB1, IL12RB2, and IL23R have similar frequencies of deleterious variants in the general population. The comparative rarity of symptomatic patients with IL-12Rß2 or IL-23R deficiency, relative to IL-12Rß1 deficiency, is, therefore, due to lower clinical penetrance. There are fewer symptomatic IL-23R- and IL-12Rß2-deficient than IL-12Rß1-deficient patients, not because these genetic disorders are rarer, but because the isolated absence of IL-12 or IL-23 is, in part, compensated by the other cytokine for the production of IFN-γ, thereby providing some protection against mycobacteria. These experiments of nature show that human IL-12 and IL-23 are both required for optimal IFN-γ-dependent immunity to mycobacteria, both individually and much more so cooperatively.


Assuntos
Imunidade Inata/imunologia , Interferon gama/imunologia , Interleucina-12/imunologia , Interleucina-23/imunologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium/imunologia , Humanos , Interleucina-12/deficiência , Interleucina-12/genética , Interleucina-23/deficiência , Interleucina-23/genética , Linhagem
16.
Sci Immunol ; 3(30)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30578352

RESUMO

Inherited IL-12Rß1 and TYK2 deficiencies impair both IL-12- and IL-23-dependent IFN-γ immunity and are rare monogenic causes of tuberculosis, each found in less than 1/600,000 individuals. We show that homozygosity for the common TYK2 P1104A allele, which is found in about 1/600 Europeans and between 1/1000 and 1/10,000 individuals in regions other than East Asia, is more frequent in a cohort of patients with tuberculosis from endemic areas than in ethnicity-adjusted controls (P = 8.37 × 10-8; odds ratio, 89.31; 95% CI, 14.7 to 1725). Moreover, the frequency of P1104A in Europeans has decreased, from about 9% to 4.2%, over the past 4000 years, consistent with purging of this variant by endemic tuberculosis. Surprisingly, we also show that TYK2 P1104A impairs cellular responses to IL-23, but not to IFN-α, IL-10, or even IL-12, which, like IL-23, induces IFN-γ via activation of TYK2 and JAK2. Moreover, TYK2 P1104A is properly docked on cytokine receptors and can be phosphorylated by the proximal JAK, but lacks catalytic activity. Last, we show that the catalytic activity of TYK2 is essential for IL-23, but not IL-12, responses in cells expressing wild-type JAK2. In contrast, the catalytic activity of JAK2 is redundant for both IL-12 and IL-23 responses, because the catalytically inactive P1057A JAK2, which is also docked and phosphorylated, rescues signaling in cells expressing wild-type TYK2. In conclusion, homozygosity for the catalytically inactive P1104A missense variant of TYK2 selectively disrupts the induction of IFN-γ by IL-23 and is a common monogenic etiology of tuberculosis.


Assuntos
Interferon gama/imunologia , Interleucina-23/imunologia , Mutação de Sentido Incorreto/genética , TYK2 Quinase/genética , Tuberculose/imunologia , Células Cultivadas , Homozigoto , Humanos , Interleucina-23/deficiência , TYK2 Quinase/imunologia
17.
Genome Biol ; 19(1): 222, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563547

RESUMO

BACKGROUND: DNA methylation is influenced by both environmental and genetic factors and is increasingly thought to affect variation in complex traits and diseases. Yet, the extent of ancestry-related differences in DNA methylation, their genetic determinants, and their respective causal impact on immune gene regulation remain elusive. RESULTS: We report extensive population differences in DNA methylation between 156 individuals of African and European descent, detected in primary monocytes that are used as a model of a major innate immunity cell type. Most of these differences (~ 70%) are driven by DNA sequence variants nearby CpG sites, which account for ~ 60% of the variance in DNA methylation. We also identify several master regulators of DNA methylation variation in trans, including a regulatory hub nearby the transcription factor-encoding CTCF gene, which contributes markedly to ancestry-related differences in DNA methylation. Furthermore, we establish that variation in DNA methylation is associated with varying gene expression levels following mostly, but not exclusively, a canonical model of negative associations, particularly in enhancer regions. Specifically, we find that DNA methylation highly correlates with transcriptional activity of 811 and 230 genes, at the basal state and upon immune stimulation, respectively. Finally, using a Bayesian approach, we estimate causal mediation effects of DNA methylation on gene expression in ~ 20% of the studied cases, indicating that DNA methylation can play an active role in immune gene regulation. CONCLUSION: Using a system-level approach, our study reveals substantial ancestry-related differences in DNA methylation and provides evidence for their causal impact on immune gene regulation.


Assuntos
Grupo com Ancestrais do Continente Africano/genética , Metilação de DNA , Grupo com Ancestrais do Continente Europeu/genética , Regulação da Expressão Gênica , Imunidade Inata , Adulto , Epigênese Genética , Humanos , Masculino , Monócitos , Locos de Características Quantitativas
18.
Proc Natl Acad Sci U S A ; 115(48): E11256-E11263, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413626

RESUMO

Different human populations facing similar environmental challenges have sometimes evolved convergent biological adaptations, for example, hypoxia resistance at high altitudes and depigmented skin in northern latitudes on separate continents. The "pygmy" phenotype (small adult body size), characteristic of hunter-gatherer populations inhabiting both African and Asian tropical rainforests, is often highlighted as another case of convergent adaptation in humans. However, the degree to which phenotypic convergence in this polygenic trait is due to convergent versus population-specific genetic changes is unknown. To address this question, we analyzed high-coverage sequence data from the protein-coding portion of the genomes of two pairs of populations: Batwa rainforest hunter-gatherers and neighboring Bakiga agriculturalists from Uganda and Andamanese rainforest hunter-gatherers and Brahmin agriculturalists from India. We observed signatures of convergent positive selection between the rainforest hunter-gatherers across the set of genes with "growth factor binding" functions ([Formula: see text]). Unexpectedly, for the rainforest groups, we also observed convergent and population-specific signatures of positive selection in pathways related to cardiac development (e.g., "cardiac muscle tissue development"; [Formula: see text]). We hypothesize that the growth hormone subresponsiveness likely underlying the adult small body-size phenotype may have led to compensatory changes in cardiac pathways, in which this hormone also plays an essential role. Importantly, in the agriculturalist populations, we did not observe similar patterns of positive selection on sets of genes associated with growth or cardiac development, indicating our results most likely reflect a history of convergent adaptation to the similar ecology of rainforests rather than a more general evolutionary pattern.


Assuntos
Adaptação Fisiológica , Grupo com Ancestrais do Continente Africano/genética , Grupo com Ancestrais do Continente Asiático/genética , Coração/crescimento & desenvolvimento , Herança Multifatorial , Aclimatação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genética Populacional , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Coração/fisiologia , Humanos , Fenótipo , Floresta Úmida , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Sci Transl Med ; 10(457)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185651

RESUMO

The thymus is the primary lymphoid organ where naïve T cells are generated; however, with the exception of age, the parameters that govern its function in healthy humans remain unknown. We characterized the variability of thymic function among 1000 age- and sex-stratified healthy adults of the Milieu Intérieur cohort, using quantification of T cell receptor excision circles (TRECs) in peripheral blood T cells as a surrogate marker of thymopoiesis. Age and sex were the only nonheritable factors identified that affect thymic function. TREC amounts decreased with age and were higher in women compared to men. In addition, a genome-wide association study revealed a common variant (rs2204985) within the T cell receptor TCRA-TCRD locus, between the DD2 and DD3 gene segments, which associated with TREC amounts. Strikingly, transplantation of human hematopoietic stem cells with the rs2204985 GG genotype into immunodeficient mice led to thymopoiesis with higher TRECs, increased thymocyte counts, and a higher TCR repertoire diversity. Our population immunology approach revealed a genetic locus that influences thymopoiesis in healthy adults, with potentially broad implications in precision medicine.


Assuntos
Loci Gênicos , Variação Genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Timo/crescimento & desenvolvimento , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Fenótipo , Linfócitos T/metabolismo , Adulto Jovem
20.
Curr Opin Genet Dev ; 53: 90-97, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30103089

RESUMO

Central Africa, a forested region that supports an exceptionally high biodiversity, hosts the world's largest group of hunter-gatherers, who live in close proximity with groups that have adopted agriculture over the past 5000 years. Our understanding of the prehistory of these populations has been dramatically hampered by the almost total absence of fossil remains in this region, a limitation that has recently been circumvented by population genomics approaches. Different studies have estimated that ancestors of rainforest hunter-gatherers and Bantu-speaking farmers separated more than 60 000 years ago, supporting the occurrence of ancient population structure in Africa since the Late Pleistocene. Conversely, the Holocene in central Africa was characterized by large-scale population migrations associated with the emergence of agriculture, and increased genetic interactions between autochthonous rainforest hunter-gatherers and expanding Bantu-speaking farmers. Genomic scans have detected numerous candidate loci for positive selection in these populations, including convergent adaptation for short stature in groups of rainforest hunter-gatherers and local adaptation to endemic malaria in western and central Africans. Furthermore, there is recent increasing evidence that adaptive variation has been acquired by various African populations through admixture, suggesting a previously unappreciated role of intraspecies gene flow in local adaptation. Ancient and modern DNA studies will greatly broaden, and probably challenge, our view on the past history of central Africa, where introgression from yet uncharacterized archaic hominins and long-term adaptation to distinct ecological niches are suspected.


Assuntos
Adaptação Fisiológica/genética , Grupo com Ancestrais do Continente Africano/genética , Genética Populacional , África , África Central/epidemiologia , Demografia , Fazendeiros , Fluxo Gênico/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA