Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 4(6)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719140

RESUMO

Recent studies of mammalian microbiomes have identified strong phylogenetic effects on bacterial community composition. Bats (Mammalia: Chiroptera) are among the most speciose mammals on the planet and the only mammal capable of true flight. We examined 1,236 16S rRNA amplicon libraries of the gut, oral, and skin microbiota from 497 Afrotropical bats (representing 9 families, 20 genera, and 31 species) to assess the extent to which host ecology and phylogeny predict microbial community similarity in bats. In contrast to recent studies of host-microbe associations in other mammals, we found no correlation between chiropteran phylogeny and bacterial community dissimilarity across the three anatomical sites sampled. For all anatomical sites, we found host species identity and geographic locality to be strong predictors of microbial community composition and observed a positive correlation between elevation and bacterial richness. Last, we identified significantly different bacterial associations within the gut microbiota of insectivorous and frugivorous bats. We conclude that the gut, oral, and skin microbiota of bats are shaped predominantly by ecological factors and do not exhibit the same degree of phylosymbiosis observed in other mammals.IMPORTANCE This study is the first to provide a comprehensive survey of bacterial symbionts from multiple anatomical sites across a broad taxonomic range of Afrotropical bats, demonstrating significant associations between the bat microbiome and anatomical site, geographic locality, and host identity-but not evolutionary history. This study provides a framework for future systems biology approaches to examine host-symbiont relationships across broad taxonomic scales, emphasizing the need to elucidate the interplay between host ecology and evolutionary history in shaping the microbiome of different anatomical sites.

2.
BMC Evol Biol ; 19(1): 166, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31434566

RESUMO

BACKGROUND: The Old World insectivorous bat genus Rhinolophus is highly speciose. Over the last 15 years, the number of its recognized species has grown from 77 to 106, but knowledge of their interrelationships has not kept pace. Species limits and phylogenetic relationships of this morphologically conservative group remain problematic due both to poor sampling across the Afrotropics and to repeated instances of mitochondrial-nuclear discordance. Recent intensive surveys in East Africa and neighboring regions, coupled with parallel studies by others in West Africa and in Southern Africa, offer a new basis for understanding its evolutionary history. RESULTS: We investigated phylogenetic relationships and intraspecific genetic variation in the Afro-Palearctic clade of Rhinolophidae using broad sampling. We sequenced mitochondrial cytochrome-b (1140 bp) and four independent and informative nuclear introns (2611 bp) for 213 individuals and incorporated sequence data from 210 additional individuals on GenBank that together represent 24 of the 33 currently recognized Afrotropical Rhinolophus species. We addressed the widespread occurrence of mito-nuclear discordance in Rhinolophus by inferring concatenated and species tree phylogenies using only the nuclear data. Well resolved mitochondrial, concatenated nuclear, and species trees revealed phylogenetic relationships and population structure of the Afrotropical species and species groups. CONCLUSIONS: Multiple well-supported and deeply divergent lineages were resolved in each of the six African Rhinolophus species groups analyzed, suggesting as many as 12 undescribed cryptic species; these include several instances of sympatry among close relatives. Coalescent lineage delimitation offered support for new undescribed lineages in four of the six African groups in this study. On the other hand, two to five currently recognized species may be invalid based on combined mitochondrial and/or nuclear phylogenetic analyses. Validation of these cryptic lineages as species and formal relegation of current names to synonymy will require integrative taxonomic assessments involving morphology, ecology, acoustics, distribution, and behavior. The resulting phylogenetic framework offers a powerful basis for addressing questions regarding their ecology and evolution.


Assuntos
Quirópteros/classificação , Quirópteros/genética , Filogenia , África , Animais , Núcleo Celular/genética , Citocromos b/genética , DNA Mitocondrial/genética , Íntrons , Simpatria
3.
Proc Natl Acad Sci U S A ; 116(25): 12212-12219, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160448

RESUMO

A massive reduction in CO2 emissions from fossil fuel burning is required to limit the extent of global warming. However, carbon-based liquid fuels will in the foreseeable future continue to be important energy storage media. We propose a combination of largely existing technologies to use solar energy to recycle atmospheric CO2 into a liquid fuel. Our concept is clusters of marine-based floating islands, on which photovoltaic cells convert sunlight into electrical energy to produce H2 and to extract CO2 from seawater, where it is in equilibrium with the atmosphere. These gases are then reacted to form the energy carrier methanol, which is conveniently shipped to the end consumer. The present work initiates the development of this concept and highlights relevant questions in physics, chemistry, and mechanics.

4.
J Synchrotron Radiat ; 26(Pt 3): 874-886, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074452

RESUMO

The Bernina instrument at the SwissFEL Aramis hard X-ray free-electron laser is designed for studying ultrafast phenomena in condensed matter and material science. Ultrashort pulses from an optical laser system covering a large wavelength range can be used to generate specific non-equilibrium states, whose subsequent temporal evolution can be probed by selective X-ray scattering techniques in the range 2-12 keV. For that purpose, the X-ray beamline is equipped with optical elements which tailor the X-ray beam size and energy, as well as with pulse-to-pulse diagnostics that monitor the X-ray pulse intensity, position, as well as its spectral and temporal properties. The experiments can be performed using multiple interchangeable endstations differing in specialization, diffractometer and X-ray analyser configuration and load capacity for specialized sample environment. After testing the instrument in a series of pilot experiments in 2018, regular user operation begins in 2019.

5.
Zool Res ; 40(1): 3-52, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30348934

RESUMO

Kenya has a rich mammalian fauna. We reviewed recently published books and papers including the six volumes of Mammals of Africa to develop an up-to-date annotated checklist of all mammals recorded from Kenya. A total of 390 species have been identified in the country, including 106 species of rodents, 104 species of bats, 63 species of even-toed ungulates (including whales and dolphins), 36 species of insectivores and carnivores, 19 species of primates, five species of elephant shrews, four species of hyraxes and odd-toed ungulates, three species of afrosoricids, pangolins, and hares, and one species of aardvark, elephant, sirenian and hedgehog. The number of species in this checklist is expected to increase with additional surveys and as the taxonomic status of small mammals (e.g., bats, shrews and rodents) becomes better understood.


Assuntos
Distribuição Animal , Biodiversidade , Mamíferos , Animais , Quênia
6.
PeerJ ; 6: e4864, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844995

RESUMO

Background: Free-tailed bats of the genus Otomops are poorly known, and most species are documented from a handful of widely scattered localities. Recently, two allopatric species of Otomops were recognized in continental Africa: Otomops martiensseni (Matschie, 1897) in southern, central and western Africa, and the new species O. harrisoni Ralph et al., 2015 in the northeast and in Yemen. Methods: We collected additional samples of Otomops in Kenya and Rwanda where the ranges of these taxa approach one another to clarify their geographic ranges and taxonomic status. Mitochondrial and nuclear intron sequences served to identify and delimit species; we also documented their echolocation call variation and ectoparasite complements. Results: Otomops martiensseni, the southern African species, was documented in northern Kenya in Marsabit National Park. O. harrisoni, the northeastern African-Arabian species, was documented in southern Kenya and in a cave in Musanze District, Rwanda. Moreover, individuals of both species were found together at the Musanze cave, establishing them in precise spatial and temporal sympatry. Analyses of mitochondrial and nuclear loci identify no evidence of admixture between these forms, although available samples limit the power of this analysis. Echolocation call differences are also apparent among the three localities we analyzed. Three orders of insects and two families of mites are newly reported as ectoparasites of O. harrisoni. Discussion: Our results corroborate species rank for O. harrisoni and establish a zone of potential geographic overlap with O. martiensseni spanning at least 800 km of latitude. The new records establish the species in sympatry in northern Rwanda and add an additional species to the bat faunas of both Kenya and Rwanda. Future studies are needed to understand Otomops roosting requirements and movements, thereby explaining the paucity of known colonies and yielding better estimates of their conservation status. The discovery of mixed roosting associations in Rwanda invites further investigation.

7.
PLoS One ; 13(4): e0195084, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29624590

RESUMO

Dasypus is the most speciose genus of the order Cingulata, including approximately 40% of known living armadillos. Nine species are currently recognized, although comprehensive analyses of the entire genus have never been done. Our aim is to revise the taxonomy of the long-nosed armadillos and properly define the taxa. We examined 2126 specimens of Dasypus preserved in 39 different museum collections, including 17 type specimens. Three complementary methods were applied to explore morphological datasets both qualitatively and quantitatively. Qualitative morphological variation in discrete characters was assessed by direct observations of specimens. Linear morphometric variation was based on external data and cranial measurements of 887 adult skulls. The shape and size of the skull was abstracted through two-dimensional geometric morphometric analyses of dorsal, lateral and ventral views of respectively 421, 211, and 220 adult specimens. Our results converge on the recognition of eight living species (D. beniensis, D. kappleri, D. mazzai, D. novemcinctus, D. pastasae, D. pilosus, D. sabanicola, and D. septemcinctus), and three subspecies of D. septemcinctus (D. s. septemcinctus, D. s. hybridus, and a new subspecies from Cordoba described here). Information on type material, diagnosis, distribution, and taxonomic comments for each taxon are provided. We designate a lectotype for D. novemcinctus; and a neotype for Loricatus hybridus (= D. septemcinctus hybridus).


Assuntos
Tatus/anatomia & histologia , Tatus/classificação , Distribuição Animal , Animais , Geografia , Característica Quantitativa Herdável
8.
Zookeys ; (697): 87-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29134018

RESUMO

The taxonomy of American deer has been established almost entirely on the basis of morphological data and without the use of explicit phylogenetic methods; hence, phylogenetic analyses including data for all of the currently recognized species, even if based on a single gene, might improve current understanding of their taxonomy. We tested the monophyly of the morphology-defined genera and species of New World deer (Odocoileini) with phylogenetic analyses of mitochondrial DNA sequences. This is the first such test conducted using extensive geographic and taxonomic sampling. Our results do not support the monophyly of Mazama, Odocoileus, Pudu, M. americana, M. nemorivaga, Od. hemionus, and Od. virginianus. Mazama contains species that belong to other genera. We found a novel sister-taxon relationship between "Mazama" pandora and a clade formed by Od. hemionus columbianus and Od. h. sitkensis, and transfer pandora to Odocoileus. The clade formed by Od. h. columbianus and Od. h. sitkensis may represent a valid species, whereas the remaining subspecies of Od. hemionus appear closer to Od. virginianus. Pudu (Pudu) puda was not found sister to Pudu (Pudella) mephistophiles. If confirmed, this result will prompt the recognition of the monotypic Pudella as a distinct genus. We provide evidence for the existence of an undescribed species now confused with Mazama americana, and identify other instances of cryptic, taxonomically unrecognized species-level diversity among populations here regarded as Mazama temama, "Mazama" nemorivaga, and Hippocamelus antisensis. Noteworthy records that substantially extend the known distributions of M. temama and "M." gouazoubira are provided, and we unveil a surprising ambiguity regarding the distribution of "M." nemorivaga, as it is described in the literature. The study of deer of the tribe Odocoileini has been hampered by the paucity of information regarding voucher specimens and the provenance of sequences deposited in GenBank. We pinpoint priorities for future systematic research on the tribe Odocoileini.

9.
Sci Rep ; 7(1): 904, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424462

RESUMO

Lions (Panthera leo) feed on diverse prey species, a range that is broadened by their cooperative hunting. Although humans are not typical prey, habitual man-eating by lions is well documented. Fathoming the motivations of the Tsavo and Mfuwe man-eaters (killed in 1898 in Kenya and 1991 in Zambia, respectively) may be elusive, but we can clarify aspects of their behaviour using dental microwear texture analysis. Specifically, we analysed the surface textures of lion teeth to assess whether these notorious man-eating lions scavenged carcasses during their depredations. Compared to wild-caught lions elsewhere in Africa and other large feliforms, including cheetahs and hyenas, dental microwear textures of the man-eaters do not suggest extreme durophagy (e.g. bone processing) shortly before death. Dental injuries to two of the three man-eaters examined may have induced shifts in feeding onto softer foods. Further, prompt carcass reclamation by humans likely limited the man-eaters' access to bones. Man-eating was likely a viable alternative to hunting and/or scavenging ungulates due to dental disease and/or limited prey availability.


Assuntos
Leões/fisiologia , Comportamento Predatório , Dente/anatomia & histologia , Animais , Ingestão de Alimentos , Comportamento Alimentar , Leões/anatomia & histologia , Leões/classificação , Dente/fisiologia
10.
Mol Biol Evol ; 34(3): 613-633, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025278

RESUMO

Echimyidae is one of the most speciose and ecologically diverse rodent families in the world, occupying a wide range of habitats in the Neotropics. However, a resolved phylogeny at the genus-level is still lacking for these 22 genera of South American spiny rats, including the coypu (Myocastorinae), and 5 genera of West Indian hutias (Capromyidae) relatives. Here, we used Illumina shotgun sequencing to assemble 38 new complete mitogenomes, establishing Echimyidae, and Capromyidae as the first major rodent families to be completely sequenced at the genus-level for their mitochondrial DNA. Combining mitogenomes and nuclear exons, we inferred a robust phylogenetic framework that reveals several newly supported nodes as well as the tempo of the higher level diversification of these rodents. Incorporating the full generic diversity of extant echimyids leads us to propose a new higher level classification of two subfamilies: Euryzygomatomyinae and Echimyinae. Of note, the enigmatic Carterodon displays fast-evolving mitochondrial and nuclear sequences, with a long branch that destabilizes the deepest divergences of the echimyid tree, thereby challenging the sister-group relationship between Capromyidae and Euryzygomatomyinae. Biogeographical analyses involving higher level taxa show that several vicariant and dispersal events impacted the evolutionary history of echimyids. The diversification history of Echimyidae seems to have been influenced by two major historical factors, namely (1) recurrent connections between Atlantic and Amazonian Forests and (2) the Northern uplift of the Andes.


Assuntos
Genoma Mitocondrial , Mitocôndrias/genética , Roedores/genética , Animais , Sequência de Bases , Teorema de Bayes , Evolução Biológica , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Filogenia , Filogeografia/métodos , Ratos , Análise de Sequência de DNA/métodos , América do Sul
11.
Evolution ; 71(3): 610-632, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28025827

RESUMO

Evolutionary radiations on continents are less well-understood and appreciated than those occurring on islands. The extent of ecological influence on species divergence can be evaluated to determine whether a radiation was ultimately the outcome of divergent natural selection or else arose mainly by nonecological divergence. Here, we used phylogenetic comparative methods to test distinct hypotheses corresponding to adaptive and nonadaptive evolutionary scenarios for the morphological evolution of sigmodontine rodents. Results showed that ecological variables (diet and life-mode) explain little of the shape and size variation of sigmodontine skulls and mandibles. A Brownian model with varying rates for insectivory versus all other diets was the most likely evolutionary model. The insectivorous sigmodontines have a faster rate of morphological evolution than mice feeding on other diets, possibly due to stronger selection for features that aid insectivory. We also demonstrate that rapid early-lineage diversification is not accompanied by high morphological divergence among subclades, contrasting with island results. The geographic size of continents permits spatial segregation to a greater extent than on islands, allowing for allopatric distributions and escape from interspecific competition. We suggest that continental radiations of rodents are likely to produce a pattern of high species diversification coupled with a low degree of phenotypic specialization.


Assuntos
Evolução Biológica , Seleção Genética , Sigmodontinae/anatomia & histologia , Adaptação Biológica , Animais , Mandíbula/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , América do Sul
12.
Sci Rep ; 6: 33292, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27620067

RESUMO

X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.

13.
Mol Phylogenet Evol ; 99: 7-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26975691

RESUMO

Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution.


Assuntos
Quirópteros/parasitologia , Haemosporida/classificação , Parasitos/classificação , Primatas/parasitologia , Roedores/parasitologia , África Oriental , Animais , Teorema de Bayes , Quirópteros/classificação , Haemosporida/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Funções Verossimilhança , Parasitos/crescimento & desenvolvimento , Filogenia
14.
PLoS One ; 11(3): e0151895, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26999278

RESUMO

Understanding the spatial distribution of species sheds light on the group's biogeographical history, offers clues to the drivers of diversity, and helps to guide conservation strategies. Here, we compile geographic range information for South America's diverse rodents, whose 14 families comprise ~50% of the continent's mammalian species. The South American rodent fauna is dominated by independent and temporally staggered radiations of caviomorph and sigmodontine groups. We mapped species richness and turnover of all rodents and the principal clades to identify the main predictors of diversity patterns. Species richness was highest in the Andes, with a secondary hotspot in Atlantic Forest and some regions of considerable richness in Amazonia. Differences in richness were evident between the caviomorphs and sigmodontines, the former showing the greatest richness in tropical forests whereas the latter show-and largely determine-the all-rodent pattern. Elevation was the main predictor of sigmodontine richness, whereas temperature was the principal variable correlated with richness of caviomorphs. Across clades, species turnover was highest along the Andes and was best explained by elevational relief. In South America, the effects of the familiar latitudinal gradient in species richness are mixed with a strong longitudinal effect, triggered by the importance of elevation and the position of the Andes. Both latitudinal and elevational effects help explain the complicated distribution of rodent diversity across the continent. The continent's restricted-range species-those seemingly most vulnerable to localized disturbance-are mostly distributed along the Andes and in Atlantic Forest, with the greatest concentration in Ecuador. Both the Andes and Atlantic Forest are known hotspots for other faunal and floral components. Contrasting patterns of the older caviomorph and younger sigmodontine radiations underscore the interplay of both historical and ecological factors in determining present-day diversity patterns.


Assuntos
Biodiversidade , Roedores/fisiologia , Altitude , Animais , Geografia , Modelos Teóricos , Análise de Regressão , América do Sul , Especificidade da Espécie
15.
PLoS One ; 10(6): e0129113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121688

RESUMO

We studied the taxonomy and biogeography of Mazama bricenii, a brocket deer classified as Vulnerable by the IUCN, drawing on qualitative and quantitative morphology and sequences of the mitochondrial cytochrome-b gene. We used Ecological Niche Modeling (ENM) to evaluate the hypothesis that M. bricenii of the Venezuelan Cordillera de Mérida (CM) might have become isolated from populations of its putative sister species, Mazama rufina, in the Colombian Cordillera Oriental (CO). This hypothesis assumes that warm, dry climatic conditions in the Táchira Depression were unsuitable for the species. Our analyses did not reveal morphological differences between specimens geographically attributable to M. bricenii and M. rufina, and phylogenetic analyses of molecular data recovered M. bricenii nested within the diversity of M. rufina. These results indicate that M. bricenii should be regarded as a junior synonym of M. rufina. ENM analyses revealed the existence of suitable climatic conditions for M. rufina in the Táchira Depression during the last glacial maximum and even at present, suggesting that gene flow between populations in the CO and CM may have occurred until at least the beginning of the current interglacial period and may continue today. Because this pattern might characterize other mammals currently considered endemic to the CM, we examined which of these species match two criteria that we propose herein to estimate if they can be regarded as endemic to the CM with confidence: (1) that morphological or molecular evidence exists indicating that the putative endemic taxon is distinctive from congeneric populations in the CO; and (2) that the putative endemic taxon is restricted to either cloud forest or páramo, or both. Only Aepeomys reigi, Cryptotis meridensis, and Nasuella meridensis matched both criteria; hence, additional research is necessary to assess the true taxonomic status and distribution of the remaining species thought to be CM endemics.


Assuntos
Cervos/classificação , Geografia , Animais , Clima , Citocromos b/genética , Cervos/anatomia & histologia , Ecossistema , Evolução Molecular , Modelos Teóricos , Análise Multivariada , Filogenia , Análise de Componente Principal , Venezuela
16.
Chimia (Aarau) ; 68(1-2): 73-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801701

RESUMO

Next-generation X-ray sources, based on the X-ray Free Electron Laser (XFEL) concept, will provide highly coherent, ultrashort pulses of soft and hard X-rays with peak intensity many orders of magnitude higher than that of a synchrotron. These pulses will allow studies of femtosecond dynamics at nanometer resolution and with chemical selectivity. They will produce diffraction images of organic and inorganic nanostructures without deleterious effects of radiation damage.


Assuntos
Lasers , Difração de Raios X/métodos , Biologia/instrumentação , Biologia/métodos , Modelos Teóricos , Fotoquímica/instrumentação , Fotoquímica/métodos , Difração de Raios X/instrumentação
17.
Zookeys ; (402): 43-66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24843262

RESUMO

Two new species of yellow-shouldered bats Sturnira Gray, 1842 (Chiroptera, Phyllostomidae) from Central America and western South America are described using molecular and morphological data. The two new species, which occur in Costa Rica and Panama and in western Ecuador, were previously confused with S. ludovici, and S. lilium and S. luisi, respectively. Sturnira now includes 22 described species, making it the most speciose genus in the Neotropical family Phyllostomidae.

18.
J Anim Ecol ; 83(5): 1124-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24428636

RESUMO

Research concerning spatial dynamics of biodiversity generally has been limited to considerations of the taxonomic dimension, which is insensitive to interspecific variation in ecological or evolutionary characteristics that play important roles in species assembly and provide linkages to ecosystem services. Consequently, the assumption that the taxonomic dimension is a good surrogate for other dimensions remains unconfirmed. We assessed variation in taxonomic (species richness) as well as phylogenetic and functional (Rao's quadratic entropy, a measurement of dispersion) dimensions of bat biodiversity along an elevational gradient in the Manu Biosphere Reserve of Peru. Phylogenetic dispersion was based on relatedness of species derived from a mammalian supertree. Functional dispersion was estimated separately for each of six functional components that reflect particular niche axes (e.g. diet, foraging strategy, body size) and for all functional components combined. Species richness declined nonlinearly with elevation, whereas phylogenetic dispersion and functional dispersion based on all functional components were not significantly associated with elevation (orthogonal polynomial regression). Moreover, considerable heterogeneity in the form of elevational relationships existed among functional components. After accounting for variation in species richness, dispersion of phylogenetic, diet and foraging strategy attributes were significantly greater than expected at high elevations, whereas dispersion of body size was significantly less than expected at high elevations. Species richness was a poor surrogate for phylogenetic or functional dispersion. Functional dispersion based on multiple components obscured patterns detected by particular components and hindered identification of mechanistic explanations for elevational variation in biodiversity. Variation in phylogenetic dispersion effectively captured the composite variation represented by all functional components, suggesting a phylogenetic signal in functional attributes. Mechanisms that give rise to variation in richness do not fully account for variation in phylogenetic or functional characteristics of assemblages. Greater than expected phylogenetic, diet and foraging strategy dispersion at high elevations were associated with the loss of phylogenetically or functionally redundant species, suggesting that increasing interspecific competition with decreasing productivity resulted in competitive exclusion. In contrast, low dispersion of size attributes at high elevations suggests the importance of abiotic filtering that favours small-sized species that can more easily enter torpor.


Assuntos
Altitude , Comportamento Apetitivo , Biodiversidade , Tamanho Corporal , Quirópteros/classificação , Quirópteros/fisiologia , Dieta , Filogenia , Animais , Evolução Biológica , Ecossistema , Geografia , Peru , Clima Tropical
19.
Chimia (Aarau) ; 68(1): 73-78, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28982442

RESUMO

Next-generation X-ray sources, based on the X-ray Free Electron Laser (XFEL) concept, will provide highly coherent, ultrashort pulses of soft and hard X-rays with peak intensity many orders of magnitude higher than that of a synchrotron. These pulses will allow studies of femtosecond dynamics at nanometer resolution and with chemical selectivity. They will produce diffraction images of organic and inorganic nanostructures without deleterious effects of radiation damage.

20.
BMC Evol Biol ; 13: 191, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24015814

RESUMO

BACKGROUND: The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt-b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. RESULTS: Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. CONCLUSIONS: Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and Amazonian centers of endemism appear enriched by lineages that originated in the other region. Our survey of other South American lineages suggests a pattern of reciprocal exchange between these regions-among mammals, birds, amphibians, and insects we found no fewer than 87 transitions between the Andes and Amazon from Miocene-Pleistocene. Because no clear trend emerges between the timing and polarity of transitions, or in their relative frequency, we suggest that reciprocal exchange between tropical highland and lowland faunas in South America has been a continual process since ca. 12 Ma.


Assuntos
Filogeografia , Roedores/classificação , Roedores/genética , Animais , Evolução Biológica , Ecossistema , Filogenia , Roedores/fisiologia , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA