Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 82019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31262402

RESUMO

Adolescence is a common time for initiation of alcohol use and development of alcohol use disorders. The present study investigates neuroanatomical predictors for trajectories of future alcohol use based on a novel voxel-wise whole-brain structural equation modeling framework. In 1814 healthy adolescents of the IMAGEN sample, the Alcohol Use Disorder Identification Test (AUDIT) was acquired at three measurement occasions across five years. Based on a two-part latent growth curve model, we conducted whole-brain analyses on structural MRI data at age 14, predicting change in alcohol use score over time. Higher grey-matter volumes in the caudate nucleus and the left cerebellum at age 14 years were predictive of stronger increase in alcohol use score over 5 years. The study is the first to demonstrate the feasibility of running separate voxel-wise structural equation models thereby opening new avenues for data analysis in brain imaging.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31326579

RESUMO

OBJECTIVE: Cannabis consumption during adolescence has been reported as a risk factor for psychotic-like experiences (PLEs) and schizophrenia. However, brain developmental processes associated with cannabis-related PLEs are still poorly described. METHOD: A total of 706 adolescents from the general population who were recruited by the IMAGEN consortium had structural magnetic resonance imaging scans at both 14 and 19 years of age. We used deformation-based morphometry to map voxelwise brain changes between the two time points, using the pairwise algorithm in SPM12b. We used an a priori region-of-interest approach focusing on the hippocampus/parahippocampus to perform voxelwise linear regressions. Lifetime cannabis consumption was assessed using the European School Survey Project on Alcohol and other Drugs (ESPAD), and PLEs were assessed with the Comprehensive Assessment Psychotic-like experiences (CAPE) tool. We first tested whether hippocampus/parahippocampus development was associated with PLEs. Then we formulated and tested an a priori simple mediation model in which uncus development mediates the association between lifetime cannabis consumption and PLEs. RESULTS: We found that PLEs were associated with reduced expansion within a specific region of the right hippocampus/parahippocampus formation, the uncus (p = .002 at the cluster level, p = .018 at the peak level). The partial simple mediation model revealed a significant total effect from lifetime cannabis consumption to PLEs (b = 0.069, 95% CI = 0.04-0.1, p =2 × 10-16), as well as a small yet significant, indirect effect of right uncus development (0.004; 95% CI = 0.0004-0.01, p = .026). CONCLUSION: We show here that the uncus development is involved in the cerebral basis of PLEs in a population-based sample of healthy adolescents.

3.
Hypertension ; 74(2): 407-412, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31230538

RESUMO

High blood pressure (BP) is the strongest modifiable risk factor for cardiovascular disease. Overweight/obesity is a major risk factor of high BP. Multiple sex differences exist in mechanistic pathways that increase BP in overweight/obesity. They may result in a sex-specific pattern of BP hemodynamics-males and females may vary in the relative contributions of stroke volume, total peripheral resistance (TPR), and heart rate to higher BP. We investigated this possibility in a population-based sample of middle-aged adults (36-65 years). The total sample (n=618) included 289 males and 329 females; 79% of males and 66% of females were overweight. In all, we measured BP, stroke volume, TPR, and heart rate beat-by-beat during a 52-minute protocol that included changes in posture and mental stress. We assessed the relative contributions of stroke volume, TPR, and heart rate to BP at each minute of the protocol. We observed marked sex differences in BP hemodynamics in overweight/obese individuals: the main determinant of higher BP was TPR in males (49% versus only 35% in females, P=0.008), whereas it was stroke volume in females (51% versus only 35% in males, P=0.006). These sex differences were most apparent when standing or sitting at rest. No such differences were seen in normal-weight individuals in whom the main determinant of higher BP was TPR in both sexes. Our study suggests that, in middle-aged adults, marked sex differences exist in BP hemodynamics, contributing to high BP in overweight/obese but not normal-weight individuals. As such, this study may contribute to precision medicine in hypertension.

4.
Cereb Cortex ; 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240317

RESUMO

Exposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4-97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life.

5.
Nat Neurosci ; 22(7): 1196, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31168101

RESUMO

Several occurrences of the word 'schizophrenia' have been re-worded as 'liability to schizophrenia' or 'schizophrenia risk', including in the title, which should have been "GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability," as well as in Supplementary Figures 1-10 and Supplementary Tables 7-10, to more accurately reflect the findings of the work.

6.
Dev Cogn Neurosci ; 38: 100665, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31176282

RESUMO

Detecting errors and adjusting behaviour appropriately are fundamental cognitive abilities that are known to improve through adolescence. The cognitive and neural processes underlying this development, however, are still poorly understood. To address this knowledge gap, we performed a thorough investigation of error processing in a Flanker task in a cross-sectional sample of participants 8 to 19 years of age (n = 98). We examined age-related differences in event-related potentials known to be associated with error processing, namely the error-related negativity (ERN) and the error positivity (Pe), as well as their relationships with task performance, post-error adjustments and regional cingulate cortex thickness and surface area. We found that ERN amplitude increased with age, while Pe amplitude remained constant. A more negative ERN was associated with higher task accuracy and faster reaction times, while a more positive Pe was associated with higher accuracy, independently of age. When estimating post-error adjustments from trials following both incongruent and congruent trials, post-error slowing and post-error improvement in accuracy both increased with age, but this was only found for post-error slowing when analysing trials following incongruent trials. There were no age-independent associations between either ERN or Pe amplitude and cingulate cortex thickness or area measures.

7.
Neuroimage ; 199: 351-365, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173905

RESUMO

Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques - embedded feature selection and bootstrap aggregation (bagging) - to model performance was also quantified. Five machine learning regression methods - Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.

8.
PLoS One ; 14(5): e0216152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048888

RESUMO

In structural neuroimaging studies, reduced cerebral cortical thickness in orbital and ventromedial prefrontal regions is frequently interpreted as reflecting an impaired ability to downregulate neuronal activity in the amygdalae. Unfortunately, little research has been conducted in order to test this conjecture. We examine the extent to which amygdalar reactivity is associated with cortical thickness in a population-based sample of adolescents. Data were obtained from the IMAGEN study, which includes 2,223 adolescents. While undergoing functional neuroimaging, participants passively viewed video clips of a face that started from a neutral expression and progressively turned angry, or, instead, turned to a second neutral expression. Left and right amygdala ROIs were used to extract mean BOLD signal change for the angry minus neutral face contrast for all subjects. T1-weighted images were processed through the CIVET pipeline (version 2.1.0). In variable-centered analyses, local cortical thickness was regressed against amygdalar reactivity using first and second-order linear models. In a follow-up person-centered analysis, we defined a "high reactive" group of participants based on mean amygdalar BOLD signal change for the angry minus neutral face contrast. Between-group differences in cortical thickness were examined ("high reactive" versus all other participants). A significant association was revealed between the continuous measure of amygdalar reactivity and bilateral ventromedial prefrontal cortical thickness in a second-order linear model (p < 0.05, corrected). The "high reactive" group, in comparison to all other participants, possessed reduced cortical thickness in bilateral orbital and ventromedial prefrontal cortices, bilateral anterior temporal cortices, left caudal middle temporal gyrus, and the left inferior and middle frontal gyri (p < 0.05, corrected). Results are consistent with non-human primate studies, and provide empirical support for an association between reduced prefrontal cortical thickness and amygdalar reactivity. Future research will likely benefit from investigating the degree to which psychopathology qualifies relations between prefrontal cortical structure and amygdalar reactivity.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31072760

RESUMO

BACKGROUND: Studying the neural consequences of tobacco smoking during adolescence, including those associated with early light use, may help expose the mechanisms that underlie the transition from initial use to nicotine dependence in adulthood. However, only a few studies in adolescents exist, and they include small samples. In addition, the neural mechanism, if one exists, that links nicotinic receptor genes to smoking behavior in adolescents is still unknown. METHODS: Structural and diffusion tensor magnetic resonance imaging data were acquired from a large sample of 14-year-old adolescents who completed an extensive battery of neuropsychological, clinical, personality, and drug-use assessments. Additional assessments were conducted at 16 years of age. RESULTS: Exposure to smoking in adolescents, even at low doses, is linked to volume changes in the ventromedial prefrontal cortex and to altered neuronal connectivity in the corpus callosum. The longitudinal analyses strongly suggest that these effects are not preexisting conditions in those who progress to smoking. There was a genetic contribution wherein the volume reduction effects were magnified in smokers who were carriers of the high-risk genotype of the alpha 5 nicotinic receptor subunit gene, rs16969968. CONCLUSIONS: These findings give insight into a mechanism involving genes, brain structure, and connectivity underlying why some adolescents find nicotine especially addictive.

10.
J Clin Endocrinol Metab ; 104(9): 3735-3742, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942860

RESUMO

CONTEXT: Visceral fat (VF), more than fat elsewhere in the body [mostly subcutaneous fat (SF)], promotes systemic inflammation and related disease. The mechanisms of preferentially visceral accumulation of body fat are largely unknown. OBJECTIVE: To identify genetic loci and mechanistic pathways of preferential accumulation of VF and associated low-grade systemic inflammation. DESIGN: Genome-wide association study (GWAS). SETTING AND PARTICIPANTS: Population-based cohort of 1586 adolescents (aged 12 to 19 years) and adults (aged 36 to 65 years). MAIN OUTCOME MEASURES: Abdominal VF and SF were measured with MRI, total body fat (TBF) was assessed with bioimpedance, and low-grade systemic inflammation was examined by serum C-reactive protein (CRP) measurement. RESULTS: This GWAS of preferential accumulation of VF identified a significant locus on chromosome 6 at rs803522 (P = 1.1 × 10-9 or 4.3 × 10-10 for VF adjusted for SF or TBF, respectively). The major allele was associated with more VF; the association was similar in adolescents and adults. The allele was also associated with higher CRP level, but this association was stronger in adults than adolescents (P for interaction = 4.5 × 10-3). In adults, VF was a significant mediator (P = 1.9× 10-4) in the association between the locus and CRP, explaining 30% of the mediation. The locus was near ATG5, encoding an autophagy molecule reported to modulate adipocyte size and macrophage polarization. CONCLUSION: A genetic locus near ATG5 regulates preferential accumulation of VF (vs SF) in youth and adulthood and contributes to the development of systemic inflammation in adulthood.

11.
Neuropsychopharmacology ; 44(9): 1597-1603, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30952157

RESUMO

Few studies have investigated the link between putative biomarkers of attention-deficit/hyperactivity disorder (ADHD) symptomatology and genetic risk for ADHD. To address this, we investigate the degree to which ADHD symptomatology is associated with white matter microstructure and cerebral cortical thickness in a large population-based sample of adolescents. Critically, we then test the extent to which multimodal correlates of ADHD symptomatology are related to ADHD polygenic risk score (PRS). Neuroimaging, genetic, and behavioral data were obtained from the IMAGEN study. A dimensional ADHD composite score was derived from multi-informant ratings of ADHD symptomatology. Using tract-based spatial statistics, whole brain voxel-wise regressions between fractional anisotropy (FA) and ADHD composite score were calculated. Local cortical thickness was regressed on ADHD composite score. ADHD PRS was based on a very recent genome-wide association study, and calculated using PRSice. ADHD composite score was negatively associated with FA in several white matter pathways, including bilateral superior and inferior longitudinal fasciculi (p < 0.05, corrected). ADHD composite score was negatively associated with orbitofrontal cortical thickness (p < 0.05, corrected). The ADHD composite score was correlated with ADHD PRS (p < 0.001). FA correlates of ADHD symptomatology were significantly associated with ADHD PRS, whereas cortical thickness correlates of ADHD symptomatology were unrelated to ADHD PRS. Variation in hyperactive/inattentive symptomatology was associated with white matter microstructure, which, in turn, was related to ADHD PRS. Results suggest that genetic risk for ADHD symptomatology may be tied to biological processes affecting white matter microstructure.

12.
Cereb Cortex ; 29(4): 1736-1751, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30721969

RESUMO

Alcohol abuse is a major public health problem worldwide. Understanding the molecular mechanisms that control regular drinking may help to reduce hazards of alcohol consumption. While immunological mechanisms have been related to alcohol drinking, most studies reported changes in immune function that are secondary to alcohol use. In this report, we analyse how the gene "TRAF family member-associated NF-κB activator" (TANK) affects alcohol drinking behavior. Based on our recent discovery in a large GWAS dataset that suggested an association of TANK, SNP rs197273, with alcohol drinking, we report that SNP rs197273 in TANK is associated both with gene expression (P = 1.16 × 10-19) and regional methylation (P = 5.90 × 10-25). A tank knock out mouse model suggests a role of TANK in alcohol drinking, anxiety-related behavior, as well as alcohol exposure induced activation of insular cortex NF-κB. Functional and structural neuroimaging studies among up to 1896 adolescents reveal that TANK is involved in the control of brain activity in areas of aversive interoceptive processing, including the insular cortex, but not in areas related to reinforcement, reward processing or impulsiveness. Our findings suggest that the cortical neuroimmune regulator TANK is associated with enhanced aversive emotional processing that better protects from the establishment of alcohol drinking behavior.

13.
J Neurosci ; 39(10): 1817-1827, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30643026

RESUMO

Rates of cannabis use among adolescents are high, and are increasing concurrent with changes in the legal status of marijuana and societal attitudes regarding its use. Recreational cannabis use is understudied, especially in the adolescent period when neural maturation may make users particularly vulnerable to the effects of Δ-9-tetrahydrocannabinol (THC) on brain structure. In the current study, we used voxel-based morphometry to compare gray matter volume (GMV) in forty-six 14-year-old human adolescents (males and females) with just one or two instances of cannabis use and carefully matched THC-naive controls. We identified extensive regions in the bilateral medial temporal lobes as well as the bilateral posterior cingulate, lingual gyri, and cerebellum that showed greater GMV in the cannabis users. Analysis of longitudinal data confirmed that GMV differences were unlikely to precede cannabis use. GMV in the temporal regions was associated with contemporaneous performance on the Perceptual Reasoning Index and with future generalized anxiety symptoms in the cannabis users. The distribution of GMV effects mapped onto biomarkers of the endogenous cannabinoid system providing insight into possible mechanisms for these effects.SIGNIFICANCE STATEMENT Almost 35% of American 10th graders have reported using cannabis and existing research suggests that initiation of cannabis use in adolescence is associated with long-term neurocognitive effects. We understand very little about the earliest effects of cannabis use, however, because most research is conducted in adults with a heavy pattern of lifetime use. This study presents evidence suggesting structural brain and cognitive effects of just one or two instances of cannabis use in adolescence. Converging evidence suggests a role for the endocannabinoid system in these effects. This research is particularly timely as the legal status of cannabis is changing in many jurisdictions and the perceived risk by youth associated with smoking cannabis has declined in recent years.

14.
JAMA Psychiatry ; 76(4): 435-445, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649180

RESUMO

Importance: Deviation from normal adolescent brain development precedes manifestations of many major psychiatric symptoms. Such altered developmental trajectories in adolescents may be linked to genetic risk for psychopathology. Objective: To identify genetic variants associated with adolescent brain structure and explore psychopathologic relevance of such associations. Design, Setting, and Participants: Voxelwise genome-wide association study in a cohort of healthy adolescents aged 14 years and validation of the findings using 4 independent samples across the life span with allele-specific expression analysis of top hits. Group comparison of the identified gene-brain association among patients with schizophrenia, unaffected siblings, and healthy control individuals. This was a population-based, multicenter study combined with a clinical sample that included participants from the IMAGEN cohort, Saguenay Youth Study, Three-City Study, and Lieber Institute for Brain Development sample cohorts and UK biobank who were assessed for both brain imaging and genetic sequencing. Clinical samples included patients with schizophrenia and unaffected siblings of patients from the Lieber Institute for Brain Development study. Data were analyzed between October 2015 and April 2018. Main Outcomes and Measures: Gray matter volume was assessed by neuroimaging and genetic variants were genotyped by Illumina BeadChip. Results: The discovery sample included 1721 adolescents (873 girls [50.7%]), with a mean (SD) age of 14.44 (0.41) years. The replication samples consisted of 8690 healthy adults (4497 women [51.8%]) from 4 independent studies across the life span. A nonsynonymous genetic variant (minor T allele of rs13107325 in SLC39A8, a gene implicated in schizophrenia) was associated with greater gray matter volume of the putamen (variance explained of 4.21% in the left hemisphere; 8.66; 95% CI, 6.59-10.81; P = 5.35 × 10-18; and 4.44% in the right hemisphere; t = 8.90; 95% CI, 6.75-11.19; P = 6.80 × 10-19) and also with a lower gene expression of SLC39A8 specifically in the putamen (t127 = -3.87; P = 1.70 × 10-4). The identified association was validated in samples across the life span but was significantly weakened in both patients with schizophrenia (z = -3.05; P = .002; n = 157) and unaffected siblings (z = -2.08; P = .04; n = 149). Conclusions and Relevance: Our results show that a missense mutation in gene SLC39A8 is associated with larger gray matter volume in the putamen and that this association is significantly weakened in schizophrenia. These results may suggest a role for aberrant ion transport in the etiology of psychosis and provide a target for preemptive developmental interventions aimed at restoring the functional effect of this mutation.

16.
Int J Epidemiol ; 48(1): 45-57, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541029

RESUMO

BACKGROUND: Accumulating evidence suggests that breastfeeding benefits children's intelligence, possibly due to long-chain polyunsaturated fatty acids (LC-PUFAs) present in breast milk. Under a nutritional adequacy hypothesis, an interaction between breastfeeding and genetic variants associated with endogenous LC-PUFAs synthesis might be expected. However, the literature on this topic is controversial. METHODS: We investigated this gene × environment interaction through a collaborative effort. The primary analysis involved >12 000 individuals and used ever breastfeeding, FADS2 polymorphisms rs174575 and rs1535 coded assuming a recessive effect of the G allele, and intelligence quotient (IQ) in Z scores. RESULTS: There was no strong evidence of interaction, with pooled covariate-adjusted interaction coefficients (i.e. difference between genetic groups of the difference in IQ Z scores comparing ever with never breastfed individuals) of 0.12[(95% confidence interval (CI): -0.19; 0.43] and 0.06 (95% CI: -0.16; 0.27) for the rs174575 and rs1535 variants, respectively. Secondary analyses corroborated these results. In studies with ≥5.85 and <5.85 months of breastfeeding duration, pooled estimates for the rs174575 variant were 0.50 (95% CI: -0.06; 1.06) and 0.14 (95% CI: -0.10; 0.38), respectively, and 0.27 (95% CI: -0.28; 0.82) and -0.01 (95% CI: -0.19; 0.16) for the rs1535 variant. CONCLUSIONS: Our findings did not support an interaction between ever breastfeeding and FADS2 polymorphisms. However, subgroup analysis suggested that breastfeeding may supply LC-PUFAs requirements for cognitive development if breastfeeding lasts for some (currently unknown) time. Future studies in large individual-level datasets would allow properly powered subgroup analyses and further improve our understanding on the breastfeeding × FADS2 interaction.

17.
Am J Psychiatry ; 176(2): 146-155, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30525907

RESUMO

OBJECTIVE:: Psychosocial stress is a key risk factor for substance abuse among adolescents. Recently, epigenetic processes such as DNA methylation have emerged as potential mechanisms that could mediate this relationship. The authors conducted a genome-wide methylation analysis to investigate whether differentially methylated regions are associated with psychosocial stress in an adolescent population. METHODS:: A methylome-wide analysis of differentially methylated regions was used to examine a sample of 1,287 14-year-old adolescents (50.7% of them female) from the European IMAGEN study. The Illumina 450k array was used to assess DNA methylation, pyrosequencing was used for technical replication, and linear regression analyses were used to identify associations with psychosocial stress and substance use (alcohol and tobacco). Findings were replicated by pyrosequencing a test sample of 413 participants from the IMAGEN study. RESULTS:: Hypermethylation in the sterile alpha motif/pointed domain containing the ETS transcription factor (SPDEF) gene locus was associated with a greater number of stressful life events in an allele-dependent way. Among individuals with the minor G-allele, SPDEF methylation moderated the association between psychosocial stress and substance abuse. SPDEF methylation interacted with lifetime stress in gray matter volume in the right cuneus, which in turn was associated with the frequency of alcohol and tobacco use. SPDEF was involved in the regulation of trans-genes linked to substance use. CONCLUSIONS:: Taken together, the study findings describe a novel epigenetic mechanism that helps explain how psychosocial stress exposure influences adolescent substance abuse.

18.
Mol Psychiatry ; 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542059

RESUMO

Chronic peer victimization has long-term impacts on mental health; however, the biological mediators of this adverse relationship are unknown. We sought to determine whether adolescent brain development is involved in mediating the effect of peer victimization on psychopathology. We included participants (n = 682) from the longitudinal IMAGEN study with both peer victimization and neuroimaging data. Latent profile analysis identified groups of adolescents with different experiential patterns of victimization. We then associated the victimization trajectories and brain volume changes with depression, generalized anxiety, and hyperactivity symptoms at age 19. Repeated measures ANOVA revealed time-by-victimization interactions on left putamen volume (F = 4.38, p = 0.037). Changes in left putamen volume were negatively associated with generalized anxiety (t = -2.32, p = 0.020). Notably, peer victimization was indirectly associated with generalized anxiety via decreases in putamen volume (95% CI = 0.004-0.109). This was also true for the left caudate (95% CI = 0.002-0.099). These data suggest that the experience of chronic peer victimization during adolescence might induce psychopathology-relevant deviations from normative brain development. Early peer victimization interventions could prevent such pathological changes.

19.
Hum Brain Mapp ; 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30367731

RESUMO

Depression is the leading cause of years lost due to disability worldwide. Still, the mechanisms underlying its development are not well understood. This study aimed to evaluate white-matter properties associated with depressive symptomatology in young adulthood and their developmental origins. Diffusion tensor imaging and assessment of depressive symptomatology were conducted in 128 young adults (47% male, age 23-24) from a prenatal birth cohort (European Longitudinal Study of Pregnancy and Childhood). For a subset of these individuals, the database included information on prenatal stress (n = 93) and depressive symptoms during adolescence (assessed repeatedly at age 15 and 19). Depressive symptoms in young adulthood were associated with lower fractional anisotropy in the left and right cingulum and higher fractional anisotropy in the right corticospinal tract and superior longitudinal fasciculus. Further analyses revealed that prenatal stress and depressive symptomatology during adolescence were independent predictors of altered white-matter properties in the cingulum in young adulthood. We conclude that typically developing young adults with more depressive symptoms already exhibit tract-specific alterations in white-matter properties and that prenatal stress and depressive symptomatology during adolescence might contribute to their development.

20.
Cereb Cortex ; 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30357354

RESUMO

Primate cortical evolution has been characterized by massive and disproportionate expansion of a set of specific regions in the neocortex. The associated increase in neocortical neurons comes with a high metabolic cost, thus the functions served by these regions must have conferred significant evolutionary advantage. In the present series of analyses, we show that evolutionary high-expanding cortex - as estimated from patterns of surface growth from several primate species - shares functional connections with different brain networks in a context-dependent manner. Specifically, we demonstrate that high-expanding cortex is characterized by high internetwork functional connectivity; is recruited flexibly over many different cognitive tasks; and changes its functional coupling pattern between rest and a multimodal task-state. The capacity of high-expanding cortex to connect flexibly with various specialized brain networks depending on particular cognitive requirements suggests that its selective growth and sustainment in evolution may have been linked to an involvement in supramodal cognition. In accordance with an evolutionary-developmental view, we find that this observed ability of high-expanding regions - to flexibly modulate functional connections as a function of cognitive state - emerges gradually through childhood, with a prolonged developmental trajectory plateauing in young adulthood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA