Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr ; 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31599955

RESUMO

BACKGROUND: Many mothers of very-low-birth-weight (VLBW) infants (<1500 g) are unable to provide sufficient breast milk, and supplemental pasteurized donor human milk (donor milk) or preterm formula is required. The composition of donor milk differs from that of mother's milk and infants fed with donor milk often exhibit slower growth during hospitalization. The long-term impact of nutrient-enriched donor milk on growth, body composition, or blood pressure is unknown. OBJECTIVE: We aimed to determine the effects of nutrient-enriched donor milk compared with preterm formula on growth, body composition, and blood pressure of children born preterm and with VLBW. Associations with in-hospital mother's milk intake were explored. METHODS: This study was a follow-up of children at 5.5-y of age who participated in a randomized controlled trial evaluating the effect of nutrient-enriched donor milk (commencing at ≥120 mL·kg-1·d-1) or preterm formula fed as a supplement when mother's milk was unavailable. The trial intervention lasted 90 d or until hospital discharge, whichever occurred first. In this follow-up investigation, differences in total body fat percentage determined by using air displacement plethysmography (primary outcome), fat-free mass, skinfold thickness, waist circumference, BMI z scores, and blood pressure] were evaluated using linear regressions. RESULTS: Of 316 surviving infants from the earlier trial, 158 (50%) participated in the current study (53% male). Mean ± SD birth weight and gestational age were 1013 ± 264 g and 27.9 ± 2.5 wk. The median (IQR) intervention period was 67.5 d (52.0-91.0 d). Mean ± SD age and BMI z score at follow-up were 5.7 ± 0.2 y and -0.3 ± 1.2. Supplemental nutrient-enriched donor milk, compared to preterm formula, was not associated with growth, body composition, or blood pressure. In-hospital mother's milk intake was positively associated with height z score at 5.5 y (ß: 0.07; 95% CI: 0.004, 0.1; P = 0.04). CONCLUSIONS: Supplemental nutrient-enriched donor milk and preterm formula during initial hospitalization results in comparable long-term growth and body composition in young children born VLBW. This trial was registered at clinicaltrials.gov as NCT02759809 and at isrctn.com as ISRCTN35317141.

2.
Hypertension ; 74(2): 407-412, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31230538

RESUMO

High blood pressure (BP) is the strongest modifiable risk factor for cardiovascular disease. Overweight/obesity is a major risk factor of high BP. Multiple sex differences exist in mechanistic pathways that increase BP in overweight/obesity. They may result in a sex-specific pattern of BP hemodynamics-males and females may vary in the relative contributions of stroke volume, total peripheral resistance (TPR), and heart rate to higher BP. We investigated this possibility in a population-based sample of middle-aged adults (36-65 years). The total sample (n=618) included 289 males and 329 females; 79% of males and 66% of females were overweight. In all, we measured BP, stroke volume, TPR, and heart rate beat-by-beat during a 52-minute protocol that included changes in posture and mental stress. We assessed the relative contributions of stroke volume, TPR, and heart rate to BP at each minute of the protocol. We observed marked sex differences in BP hemodynamics in overweight/obese individuals: the main determinant of higher BP was TPR in males (49% versus only 35% in females, P=0.008), whereas it was stroke volume in females (51% versus only 35% in males, P=0.006). These sex differences were most apparent when standing or sitting at rest. No such differences were seen in normal-weight individuals in whom the main determinant of higher BP was TPR in both sexes. Our study suggests that, in middle-aged adults, marked sex differences exist in BP hemodynamics, contributing to high BP in overweight/obese but not normal-weight individuals. As such, this study may contribute to precision medicine in hypertension.

3.
Nat Neurosci ; 22(7): 1196, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31168101

RESUMO

Several occurrences of the word 'schizophrenia' have been re-worded as 'liability to schizophrenia' or 'schizophrenia risk', including in the title, which should have been "GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal effect of schizophrenia liability," as well as in Supplementary Figures 1-10 and Supplementary Tables 7-10, to more accurately reflect the findings of the work.

4.
Cereb Cortex ; 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31240317

RESUMO

Exposures to life stressors accumulate across the lifespan, with possible impact on brain health. Little is known, however, about the mechanisms mediating age-related changes in brain structure. We use a lifespan sample of participants (n = 21 251; 4-97 years) to investigate the relationship between the thickness of cerebral cortex and the expression of the glucocorticoid- and the mineralocorticoid-receptor genes (NR3C1 and NR3C2, respectively), obtained from the Allen Human Brain Atlas. In all participants, cortical thickness correlated negatively with the expression of both NR3C1 and NR3C2 across 34 cortical regions. The magnitude of this correlation varied across the lifespan. From childhood through early adulthood, the profile similarity (between NR3C1/NR3C2 expression and thickness) increased with age. Conversely, both profile similarities decreased with age in late life. These variations do not reflect age-related changes in NR3C1 and NR3C2 expression, as observed in 5 databases of gene expression in the human cerebral cortex (502 donors). Based on the co-expression of NR3C1 (and NR3C2) with genes specific to neural cell types, we determine the potential involvement of microglia, astrocytes, and CA1 pyramidal cells in mediating the relationship between corticosteroid exposure and cortical thickness. Therefore, corticosteroids may influence brain structure to a variable degree throughout life.

5.
J Clin Endocrinol Metab ; 104(9): 3735-3742, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942860

RESUMO

CONTEXT: Visceral fat (VF), more than fat elsewhere in the body [mostly subcutaneous fat (SF)], promotes systemic inflammation and related disease. The mechanisms of preferentially visceral accumulation of body fat are largely unknown. OBJECTIVE: To identify genetic loci and mechanistic pathways of preferential accumulation of VF and associated low-grade systemic inflammation. DESIGN: Genome-wide association study (GWAS). SETTING AND PARTICIPANTS: Population-based cohort of 1586 adolescents (aged 12 to 19 years) and adults (aged 36 to 65 years). MAIN OUTCOME MEASURES: Abdominal VF and SF were measured with MRI, total body fat (TBF) was assessed with bioimpedance, and low-grade systemic inflammation was examined by serum C-reactive protein (CRP) measurement. RESULTS: This GWAS of preferential accumulation of VF identified a significant locus on chromosome 6 at rs803522 (P = 1.1 × 10-9 or 4.3 × 10-10 for VF adjusted for SF or TBF, respectively). The major allele was associated with more VF; the association was similar in adolescents and adults. The allele was also associated with higher CRP level, but this association was stronger in adults than adolescents (P for interaction = 4.5 × 10-3). In adults, VF was a significant mediator (P = 1.9× 10-4) in the association between the locus and CRP, explaining 30% of the mediation. The locus was near ATG5, encoding an autophagy molecule reported to modulate adipocyte size and macrophage polarization. CONCLUSION: A genetic locus near ATG5 regulates preferential accumulation of VF (vs SF) in youth and adulthood and contributes to the development of systemic inflammation in adulthood.

6.
JAMA Psychiatry ; 76(4): 435-445, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649180

RESUMO

Importance: Deviation from normal adolescent brain development precedes manifestations of many major psychiatric symptoms. Such altered developmental trajectories in adolescents may be linked to genetic risk for psychopathology. Objective: To identify genetic variants associated with adolescent brain structure and explore psychopathologic relevance of such associations. Design, Setting, and Participants: Voxelwise genome-wide association study in a cohort of healthy adolescents aged 14 years and validation of the findings using 4 independent samples across the life span with allele-specific expression analysis of top hits. Group comparison of the identified gene-brain association among patients with schizophrenia, unaffected siblings, and healthy control individuals. This was a population-based, multicenter study combined with a clinical sample that included participants from the IMAGEN cohort, Saguenay Youth Study, Three-City Study, and Lieber Institute for Brain Development sample cohorts and UK biobank who were assessed for both brain imaging and genetic sequencing. Clinical samples included patients with schizophrenia and unaffected siblings of patients from the Lieber Institute for Brain Development study. Data were analyzed between October 2015 and April 2018. Main Outcomes and Measures: Gray matter volume was assessed by neuroimaging and genetic variants were genotyped by Illumina BeadChip. Results: The discovery sample included 1721 adolescents (873 girls [50.7%]), with a mean (SD) age of 14.44 (0.41) years. The replication samples consisted of 8690 healthy adults (4497 women [51.8%]) from 4 independent studies across the life span. A nonsynonymous genetic variant (minor T allele of rs13107325 in SLC39A8, a gene implicated in schizophrenia) was associated with greater gray matter volume of the putamen (variance explained of 4.21% in the left hemisphere; 8.66; 95% CI, 6.59-10.81; P = 5.35 × 10-18; and 4.44% in the right hemisphere; t = 8.90; 95% CI, 6.75-11.19; P = 6.80 × 10-19) and also with a lower gene expression of SLC39A8 specifically in the putamen (t127 = -3.87; P = 1.70 × 10-4). The identified association was validated in samples across the life span but was significantly weakened in both patients with schizophrenia (z = -3.05; P = .002; n = 157) and unaffected siblings (z = -2.08; P = .04; n = 149). Conclusions and Relevance: Our results show that a missense mutation in gene SLC39A8 is associated with larger gray matter volume in the putamen and that this association is significantly weakened in schizophrenia. These results may suggest a role for aberrant ion transport in the etiology of psychosis and provide a target for preemptive developmental interventions aimed at restoring the functional effect of this mutation.

8.
Int J Epidemiol ; 48(1): 45-57, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541029

RESUMO

BACKGROUND: Accumulating evidence suggests that breastfeeding benefits children's intelligence, possibly due to long-chain polyunsaturated fatty acids (LC-PUFAs) present in breast milk. Under a nutritional adequacy hypothesis, an interaction between breastfeeding and genetic variants associated with endogenous LC-PUFAs synthesis might be expected. However, the literature on this topic is controversial. METHODS: We investigated this gene × environment interaction through a collaborative effort. The primary analysis involved >12 000 individuals and used ever breastfeeding, FADS2 polymorphisms rs174575 and rs1535 coded assuming a recessive effect of the G allele, and intelligence quotient (IQ) in Z scores. RESULTS: There was no strong evidence of interaction, with pooled covariate-adjusted interaction coefficients (i.e. difference between genetic groups of the difference in IQ Z scores comparing ever with never breastfed individuals) of 0.12[(95% confidence interval (CI): -0.19; 0.43] and 0.06 (95% CI: -0.16; 0.27) for the rs174575 and rs1535 variants, respectively. Secondary analyses corroborated these results. In studies with ≥5.85 and <5.85 months of breastfeeding duration, pooled estimates for the rs174575 variant were 0.50 (95% CI: -0.06; 1.06) and 0.14 (95% CI: -0.10; 0.38), respectively, and 0.27 (95% CI: -0.28; 0.82) and -0.01 (95% CI: -0.19; 0.16) for the rs1535 variant. CONCLUSIONS: Our findings did not support an interaction between ever breastfeeding and FADS2 polymorphisms. However, subgroup analysis suggested that breastfeeding may supply LC-PUFAs requirements for cognitive development if breastfeeding lasts for some (currently unknown) time. Future studies in large individual-level datasets would allow properly powered subgroup analyses and further improve our understanding on the breastfeeding × FADS2 interaction.

9.
Curr Hypertens Rep ; 20(11): 96, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30229358

RESUMO

PURPOSE OF REVIEW: Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN. RECENT FINDINGS: Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN. New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.

10.
Int J Obes (Lond) ; 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206338

RESUMO

OBJECTIVE: Life-long maintenance of brain health is important for the prevention of cognitive impairment in older age. Low-grade peripheral inflammation associated with excess visceral fat (VF) may influence brain structure and function. Here we examined (i) if this type of inflammation is associated with altered white-matter (WM) microstructure and lower cognitive functioning in adolescents, and (ii) if recently identified circulating glycerophosphocholines (GPCs) can index this type of inflammation and associated variations in WM microstructure and cognitive functioning. SUBJECTS: We studied a community-based sample of 872 adolescents (12-18 years, 48% males) in whom we assessed VF and WM microstructure with magnetic resonance imaging, processing speed with cognitive testing, serum C-reactive protein (CRP, a common marker of peripheral inflammation) with a high-sensitivity assay, and serum levels of a panel of 64 GPCs with advanced mass spectrometry. RESULTS: VF was associated with CRP, and CRP in turn was associated with "altered" WM microstructure and lower processing speed (all p < 0.003). Further, "altered" WM microstructure was associated with lower processing speed (p < 0.0001). Of all 64 tested GPCs, 4 were associated with both VF and CRP (at Bonferroni corrected p < 0.0004). One of them, PC16:0/2:0, was also associated with WM microstructure (p < 0.0001) and processing speed (p = 0.0003), and mediated the directed associations between VF and both WM microstructure (p < 0.0001) and processing speed (p = 0.02). As a mediator, PC16:0/2:0 explained 21% of shared variance between VF and WM microstructure, and 22% of shared variance between VF and processing speed. Similar associations were observed in an auxiliary study of 80 middle-aged adults. CONCLUSIONS: Our results show that VF-related peripheral inflammation is associated with "altered" WM microstructure and lower cognitive functioning already in adolescents, and a specific circulating GPC may be a new molecule indexing this VF-related peripheral inflammation and its influences on brain structure and function.

11.
Nat Neurosci ; 21(9): 1161-1170, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30150663

RESUMO

Cannabis use is a heritable trait that has been associated with adverse mental health outcomes. In the largest genome-wide association study (GWAS) for lifetime cannabis use to date (N = 184,765), we identified eight genome-wide significant independent single nucleotide polymorphisms in six regions. All measured genetic variants combined explained 11% of the variance. Gene-based tests revealed 35 significant genes in 16 regions, and S-PrediXcan analyses showed that 21 genes had different expression levels for cannabis users versus nonusers. The strongest finding across the different analyses was CADM2, which has been associated with substance use and risk-taking. Significant genetic correlations were found with 14 of 25 tested substance use and mental health-related traits, including smoking, alcohol use, schizophrenia and risk-taking. Mendelian randomization analysis showed evidence for a causal positive influence of schizophrenia risk on cannabis use. Overall, our study provides new insights into the etiology of cannabis use and its relation with mental health.

12.
Addiction ; 113(11): 2073-2086, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30003630

RESUMO

BACKGROUND AND AIMS: Cannabis is one of the most commonly used substances among adolescents and young adults. Earlier age at cannabis initiation is linked to adverse life outcomes, including multi-substance use and dependence. This study estimated the heritability of age at first cannabis use and identified associations with genetic variants. METHODS: A twin-based heritability analysis using 8055 twins from three cohorts was performed. We then carried out a genome-wide association meta-analysis of age at first cannabis use in a discovery sample of 24 953 individuals from nine European, North American and Australian cohorts, and a replication sample of 3735 individuals. RESULTS: The twin-based heritability for age at first cannabis use was 38% [95% confidence interval (CI) = 19-60%]. Shared and unique environmental factors explained 39% (95% CI = 20-56%) and 22% (95% CI = 16-29%). The genome-wide association meta-analysis identified five single nucleotide polymorphisms (SNPs) on chromosome 16 within the calcium-transporting ATPase gene (ATP2C2) at P < 5E-08. All five SNPs are in high linkage disequilibrium (LD) (r2  > 0.8), with the strongest association at the intronic variant rs1574587 (P = 4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1 (P = 1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated with cocaine dependence in a previous study. ATP2B2, which is a member of the same calcium signalling pathway, has been associated previously with opioid dependence. SNP-based heritability for age at first cannabis use was non-significant. CONCLUSION: Age at cannabis initiation appears to be moderately heritable in western countries, and individual differences in onset can be explained by separate but correlated genetic liabilities. The significant association between age of initiation and ATP2C2 is consistent with the role of calcium signalling mechanisms in substance use disorders.

13.
Nutr Neurosci ; : 1-12, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848222

RESUMO

BACKGROUND: Folic acid plays an important role in early brain development of offspring, including proliferation and differentiation of neural stem cells known to impact the function of food intake regulatory pathways. Excess (10-fold) intakes of folic acid in the gestational diet have been linked to increased food intake and obesity in male rat offspring post-weaning. OBJECTIVE: The present study examined the effects of folic acid content in gestational diets on the development and function of two hypothalamic neuronal populations, neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), within food intake regulatory pathways of male Wistar rat offspring at birth and post-weaning. RESULTS: Folic acid fed at 5.0-fold above recommended levels (5RF) to Wistar dams during pregnancy increased the number of mature NPY-positive neurons in the hypothalamus of male offspring, compared to control (RF), 0RF, 2.5RF, and 10RF at birth. Folic acid content had no effect on expression and maturation of POMC-positive neurons. Body weight and food intake were higher in all treatment groups (2.5-, 5.0-, and 10.0-fold folic acid) from birth to 9 weeks post-weaning compared to control. Increased body weight and food intake at 9-weeks post-weaning were accompanied by a reduced activation of POMC neurons in the arcuate nucleus (ARC). CONCLUSION: Gestational folic acid content modulates expression of mature hypothalamic NPY-positive neurons at birth and activation of POMC-positive neurons at 9-weeks post-weaning in the ARC of male Wistar rat offspring which may contribute to higher body weight and food intake later in life.

14.
Int J Obes (Lond) ; 42(7): 1249-1264, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29717267

RESUMO

BACKGROUND/OBJECTIVES: A number of meta-analyses suggest an association between any maternal smoking in pregnancy and offspring overweight obesity. Whether there is a dose-response relationship across number of cigarettes and whether this differs by sex remains unclear. SUBJECT/METHODS: Studies reporting number of cigarettes smoked during pregnancy and offspring BMI published up to May 2015 were searched. An individual patient data meta-analysis of association between the number of cigarettes smoked during pregnancy and offspring overweight (defined according to the International Obesity Task Force reference) was computed using a generalized additive mixed model with non-linear effects and adjustment for confounders (maternal weight status, breastfeeding, and maternal education) and stratification for sex. RESULTS: Of 26 identified studies, 16 authors provided data on a total of 238,340 mother-child-pairs. A linear positive association was observed between the number of cigarettes smoked and offspring overweight for up to 15 cigarettes per day with an OR increase per cigarette of 1.03, 95% CI = [1.02-1.03]. The OR flattened with higher cigarette use. Associations were similar in males and females. Sensitivity analyses supported these results. CONCLUSIONS: A linear dose-response relationship of maternal smoking was observed in the range of 1-15 cigarettes per day equally in boys and girls with no further risk increase for doses above 15 cigarettes.

15.
Am J Psychiatry ; 175(6): 555-563, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29495896

RESUMO

OBJECTIVE: Alzheimer's disease is a heritable neurodegenerative disorder in which early-life precursors may manifest in cognition and brain structure. The authors evaluate this possibility by examining, in youths, associations among polygenic risk score for Alzheimer's disease, cognitive abilities, and hippocampal volume. METHOD: Participants were children 6-14 years of age in two Brazilian cities, constituting the discovery (N=364) and replication samples (N=352). As an additional replication, data from a Canadian sample (N=1,029), with distinct tasks, MRI protocol, and genetic risk, were included. Cognitive tests quantified memory and executive function. Reading and writing abilities were assessed by standardized tests. Hippocampal volumes were derived from the Multiple Automatically Generated Templates (MAGeT) multi-atlas segmentation brain algorithm. Genetic risk for Alzheimer's disease was quantified using summary statistics from the International Genomics of Alzheimer's Project. RESULTS: Analyses showed that for the Brazilian discovery sample, each one-unit increase in z-score for Alzheimer's polygenic risk score significantly predicted a 0.185 decrement in z-score for immediate recall and a 0.282 decrement for delayed recall. Findings were similar for the Brazilian replication sample (immediate and delayed recall, ß=-0.259 and ß=-0.232, both significant). Quantile regressions showed lower hippocampal volumes bilaterally for individuals with high polygenic risk scores. Associations fell short of significance for the Canadian sample. CONCLUSIONS: Genetic risk for Alzheimer's disease may affect early-life cognition and hippocampal volumes, as shown in two independent samples. These data support previous evidence that some forms of late-life dementia may represent developmental conditions with roots in childhood. This result may vary depending on a sample's genetic risk and may be specific to some types of memory tasks.

16.
JAMA Psychiatry ; 75(5): 447-457, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562078

RESUMO

Importance;: Copy number variants (CNVs) classified as pathogenic are identified in 10% to 15% of patients referred for neurodevelopmental disorders. However, their effect sizes on cognitive traits measured as a continuum remain mostly unknown because most of them are too rare to be studied individually using association studies. Objective: To measure and estimate the effect sizes of recurrent and nonrecurrent CNVs on IQ. Design, Setting, and Participants: This study identified all CNVs that were 50 kilobases (kb) or larger in 2 general population cohorts (the IMAGEN project and the Saguenay Youth Study) with measures of IQ. Linear regressions, including functional annotations of genes included in CNVs, were used to identify features to explain their association with IQ. Validation was performed using intraclass correlation that compared IQ estimated by the model with empirical data. Main Outcomes and Measures: Performance IQ (PIQ), verbal IQ (VIQ), and frequency of de novo CNV events. Results: The study included 2090 European adolescents from the IMAGEN study and 1983 children and parents from the Saguenay Youth Study. Of these, genotyping was performed on 1804 individuals from IMAGEN and 977 adolescents, 445 mothers, and 448 fathers (484 families) from the Saguenay Youth Study. We observed 4928 autosomal CNVs larger than 50 kb across both cohorts. For rare deletions, size, number of genes, and exons affect IQ, and each deleted gene is associated with a mean (SE) decrease in PIQ of 0.67 (0.19) points (P = 6 × 10-4); this is not so for rare duplications and frequent CNVs. Among 10 functional annotations, haploinsufficiency scores best explain the association of any deletions with PIQ with a mean (SE) decrease of 2.74 (0.68) points per unit of the probability of being loss-of-function intolerant (P = 8 × 10-5). Results are consistent across cohorts and unaffected by sensitivity analyses removing pathogenic CNVs. There is a 0.75 concordance (95% CI, 0.39-0.91) between the effect size on IQ estimated by our model and IQ loss calculated in previous studies of 15 recurrent CNVs. There is a close association between effect size on IQ and the frequency at which deletions occur de novo (odds ratio, 0.86; 95% CI, 0.84-0.87; P = 2.7 × 10-88). There is a 0.76 concordance (95% CI, 0.41-0.91) between de novo frequency estimated by the model and calculated using data from the DECIPHER database. Conclusions and Relevance: Models trained on nonpathogenic deletions in the general population reliably estimate the effect size of pathogenic deletions and suggest omnigenic associations of haploinsufficiency with IQ. This represents a new framework to study variants too rare to perform individual association studies and can help estimate the cognitive effect of undocumented deletions in the neurodevelopmental clinic.

17.
J Psychiatr Res ; 99: 151-158, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29454222

RESUMO

INTRODUCTION: Obesity and dyslipidemia may negatively affect brain health and are frequent medical comorbidities of schizophrenia and related disorders. Despite the high burden of metabolic disorders, little is known about their effects on brain structure in psychosis. We investigated, whether obesity or dyslipidemia contributed to brain alterations in first-episode psychosis (FEP). METHODS: 120 participants with FEP, who were undergoing their first psychiatric hospitalization, had <24 months of untreated psychosis and were 18-35 years old and 114 controls within the same age range participated in the study. We acquired 3T brain structural MRI, fasting lipids and body mass index. We used machine learning trained on an independent sample of 504 controls to estimate the individual brain age of study participants and calculated the BrainAGE score by subtracting the chronological from the estimated brain age. RESULTS: In a multiple regression model, the diagnosis of FEP (B = 1.15, SE B = 0.31, p < 0.001) and obesity/overweight (B = 0.92, SE B = 0.35, p = 0.008) were each additively associated with BrainAGE scores (R2 = 0.22, F(3, 230) = 21.92, p < 0.001). BrainAGE scores were highest in participants with FEP and obesity/overweight (3.83 years, 95%CI = 2.35-5.31) and lowest in normal weight controls (-0.27 years, 95%CI = -1.22-0.69). LDL-cholesterol, HDL-cholesterol or triglycerides were not associated with BrainAGE scores. CONCLUSIONS: Overweight/obesity may be an independent risk factor for diffuse brain alterations manifesting as advanced brain age already early in the course of psychosis. These findings raise the possibility that targeting metabolic health and intervening already at the level of overweight/obesity could slow brain ageing in FEP.

18.
Cereb Cortex ; 28(9): 3267-3277, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28968835

RESUMO

Neurobiological underpinnings of cortical thickness in the human brain are largely unknown. Here we use cell-type-specific gene markers to evaluate the contribution of 9 neural cell-types in explaining inter-regional variations in cortical thickness and age-related cortical thinning in the adolescent brain. Gene-expression data were derived from the Allen Human Brain Atlas (and validated using the BrainSpan Atlas). Values of cortical thickness/thinning were obtained with magnetic resonance imaging in a sample of 987 adolescents. We show that inter-regional profiles in cortical thickness relate to those in the expression of genes marking CA1 pyramidal cells, astrocytes, and microglia; taken together, the 3 cell types explain 70% of regional variation in cortical thickness. We also show that inter-regional profiles in cortical thinning relate to those in the expression of genes marking CA1 and S1 pyramidal cells, astrocytes and microglia. Using Gene Ontology analysis, we demonstrate that the difference in the contribution of CA1 and S1 pyramidal cells may relate to biological processes such as neuronal plasticity and potassium channel activity, respectively. This "virtual histology" approach (scripts provided) can be used to examine neurobiological underpinnings of cortical profiles associated with development, aging, and various disorders.

19.
Cereb Cortex ; 28(4): 1272-1281, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334178

RESUMO

Age-related decreases in cortical thickness observed during adolescence may be related to fluctuations in sex and stress hormones. We examine this possibility by relating inter-regional variations in age-related cortical thinning (data from the Saguenay Youth Study) to inter-regional variations in expression levels of relevant genes (data from the Allen Human Brain Atlas); we focus on genes coding for glucocorticoid receptor (NR3C1), androgen receptor (AR), progesterone receptor (PGR), and estrogen receptors (ESR1 and ESR2). Across 34 cortical regions (Desikan-Killiany parcellation), age-related cortical thinning varied as a function of mRNA expression levels of NR3C1 in males (R2 = 0.46) and females (R2 = 0.30) and AR in males only (R2 = 0.25). Cortical thinning did not vary as a function of expression levels of PGR, ESR1, or ESR2 in either sex; this might be due to the observed low consistency of expression profiles of these 3 genes across donors. Inter-regional levels of the NR3C1 and AR expression interacted with each other vis-à-vis cortical thinning: age-related cortical thinning varied as a function of NR3C1 mRNA expression in brain regions with low (males: R2 = 0.64; females: R2 = 0.58) but not high (males: R2 = 0.0045; females: R2 = 0.15) levels of AR mRNA expression. These results suggest that glucocorticoid and androgen receptors contribute to cortical maturation during adolescence.

20.
Sci Rep ; 7(1): 7397, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784996

RESUMO

Income inequality is associated with poor health and social outcomes. Negative social comparisons and competition may involve the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in underlying some of these complex inter-relationships. Here we investigate brain maturation, indexed by age-related decreases in cortical thickness, in adolescents living in neighborhoods with differing levels of income inequality and household income. We examine whether inter-regional variations relate to those in glucocorticoid receptor (HPA) and androgen receptor (HPG) gene expression. For each sex, we used a median split of income inequality and household income (income-to-needs ratio) to create four subgroups. In female adolescents, the high-inequality low-income group displayed the greatest age-related decreases in cortical thickness. In this group, expression of glucocorticoid and androgen receptor genes explained the most variance in these age-related decreases in thickness across the cortex. We speculate that female adolescents living in high-inequality neighborhoods and low-income households may experience greater HPA and HPG activity, leading to steeper decreases in cortical thickness with age.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA