Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(5): e0232623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421746

RESUMO

The loss of biodiversity during the Anthropocene is a constant topic of discussion, especially in the top biodiversity hotspots, such as Madagascar. In this regard, the study of preserved organisms through time, like those included in "Madagascar copal", is of relevance. "Madagascar copal" originated from the leguminous tree Hymenaea verrucosa, which produced and produces resin abundantly. In the last 20 years, interest has focused on the scientific study of its biological inclusions, mainly arthropods, described in dozens of publications. The age and origin of the deposits of "Madagascar copal" have not yet been resolved. Our objectives are to determine its age and geographical origin, and thus increase its scientific value as a source of biological/palaeobiological information. Although Hymenaea was established in Madagascar during the Miocene, we did not find geological deposits of copal or amber in the island. It is plausible that the evolution of those deposits was negatively conditioned by the type of soil, by the climate, and by the development of soil/litter microorganisms, which inhibit preservation of the resin pieces in the litter and subsoil over 300 years. Our results indicate that "Madagascar copal" is a Recent resin, up to a few hundred years old, that originated from Hymenaea trees growing in the lowland coastal forests, one of the most endangered ecosystems in the world. The included and preserved biota is representative of that ecosystem today and during historical times. Inclusions in this Recent resin do not have the palaeontological significance that has been mistakenly attributed to them, but they do have relevant implications for studies regarding Anthropocene biodiversity loss in this hottest hotspot.

2.
Sci Rep ; 10(1): 5703, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242031

RESUMO

The Northern Hemisphere dominates our knowledge of Mesozoic and Cenozoic fossilized tree resin (amber) with few findings from the high southern paleolatitudes of Southern Pangea and Southern Gondwana. Here we report new Pangean and Gondwana amber occurrences dating from ~230 to 40 Ma from Australia (Late Triassic and Paleogene of Tasmania; Late Cretaceous Gippsland Basin in Victoria; Paleocene and late middle Eocene of Victoria) and New Zealand (Late Cretaceous Chatham Islands). The Paleogene, richly fossiliferous deposits contain significant and diverse inclusions of arthropods, plants and fungi. These austral discoveries open six new windows to different but crucial intervals of the Mesozoic and early Cenozoic, providing the earliest occurrence(s) of some taxa in the modern fauna and flora giving new insights into the ecology and evolution of polar and subpolar terrestrial ecosystems.

3.
Commun Biol ; 2: 408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728419

RESUMO

Angiosperms and their insect pollinators form a foundational symbiosis, evidence for which from the Cretaceous is mostly indirect, based on fossils of insect taxa that today are anthophilous, and of fossil insects and flowers that have apparent anthophilous and entomophilous specializations, respectively. We present exceptional direct evidence preserved in mid-Cretaceous Burmese amber, 100 mya, for feeding on pollen in the eudicot genus Tricolporoidites by a basal new aculeate wasp, Prosphex anthophilos, gen. et sp. nov., in the lineage that contains the ants, bees, and other stinging wasps. Plume of hundreds of pollen grains wafts from its mouth and an apparent pollen mass was detected by micro-CT in the buccal cavity: clear evidence that the wasp was foraging on the pollen. Eudicots today comprise nearly three-quarters of all angiosperm species. Prosphex feeding on Tricolporoidites supports the hypothesis that relatively small, generalized insect anthophiles were important pollinators of early angiosperms.

4.
Sci Rep ; 9(1): 13248, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519980

RESUMO

Multiple predatory insect lineages have developed a raptorial lifestyle by which they strike and hold prey using modified forelegs armed with spine-like structures and other integumentary specialisations. However, how structures enabling the raptorial function evolved in insects remains largely hypothetical or inferred through phylogeny due to the rarity of meaningful fossils. This is particularly true for mantidflies (Neuroptera: Mantispidae), which have a scarce fossil record mostly based on rock compressions, namely isolated wings. Here, Aragomantispa lacerata gen. et sp. nov. is described from ca. 105-million-year-old San Just amber (Spain), representing the oldest and one of the few mantidflies hitherto described from amber. The fossil shows exquisitely preserved forefemoral spine-like structures composed of integumentary processes each bearing a modified seta, and prostrate setae on foretibiae and foretarsi. The fine morphology of these structures was unknown in fossil mantidflies. An assessment of integumentary specialisations from raptorial forelegs across mantispoid lacewings is provided. The present finding reveals how the specialised foreleg armature associated to the raptorial lifestyle in extant mantidflies was present yet not fully established by the Early Cretaceous, at least in some lineages, and provides palaeontological evidence supporting certain evolutionary patterns of acquisition of integumentary specialisations related to the raptorial function in the group.

5.
Sci Rep ; 9(1): 6420, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015542

RESUMO

Ancient protein analysis is a rapidly developing field of research. Proteins ranging in age from the Quaternary to Jurassic are being used to answer questions about phylogeny, evolution, and extinction. However, these analyses are sometimes contentious, and focus primarily on large vertebrates in sedimentary fossilisation environments; there are few studies of protein preservation in fossils in amber. Here we show exceptionally slow racemisation rates during thermal degradation experiments of resin enclosed feathers, relative to previous thermal degradation experiments of ostrich eggshell, coral skeleton, and limpet shell. We also recover amino acids from two specimens of fossil feathers in amber. The amino acid compositions are broadly similar to those of degraded feathers, but concentrations are very low, suggesting that much of the original protein has been degraded and lost. High levels of racemisation in more apolar, slowly racemising amino acids suggest that some of the amino acids were ancient and therefore original. Our findings indicate that the unique fossilisation environment inside amber shows potential for the recovery of ancient amino acids and proteins.

6.
Sci Rep ; 8(1): 16663, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30413797

RESUMO

Diverse organisms protect and camouflage themselves using varied materials from their environment. This adaptation and associated behaviours (debris-carrying) are well known in modern green lacewing larvae (Neuroptera: Chrysopidae), mostly due to the widespread use of these immature insects in pest control. However, the evolutionary history of this successful strategy and related morphological adaptations in the lineage are still far from being understood. Here we describe a novel green lacewing larva, Tyruschrysa melqart gen. et sp. nov., from Early Cretaceous Lebanese amber, carrying a preserved debris packet composed by soil particles entangled among specialised setae of extremely elongate tubular tubercles. The new morphotype has features related to the debris-carrying habit that are unknown from extant or extinct green lacewings, namely a high number of tubular tubercle pairs on the abdomen and tubular tubercle setae with mushroom-shaped endings that acted as anchoring points for debris. The current finding expands the diversity of exogenous materials used by green lacewing larvae in deep time, and represents the earliest direct evidence of debris-carrying in the lineage described to date. The debris-carrying larval habit likely played a significant role during the initial phases of diversification of green lacewings.


Assuntos
Adaptação Fisiológica , Âmbar/química , Mimetismo Biológico , Larva/fisiologia , Solo/química , Animais , Comportamento Animal , Evolução Biológica
7.
PLoS One ; 13(8): e0202235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30157208

RESUMO

Provenancing exotic raw materials and reconstructing the nature and routes of exchange is a major concern of prehistoric archaeology. Amber has long been recognised as a key commodity of prehistoric exchange networks in Europe. However, most science-based studies so far have been localised and based on few samples, hence making it difficult to observe broad geographic and chronological trends. This paper concentrates on the nature, distribution and circulation of amber in prehistoric Iberia. We present new standardised FTIR analyses of 22 archaeological and geological samples from a large number of contexts across Iberia, as well as a wide scale review of all the legacy data available. On the basis of a considerable body of data, we can confirm the use of local amber resources in the Northern area of the Iberian Peninsula from the Palaeolithic to the Bronze Age; we push back the arrival of Sicilian amber to at least the 4th Millennium BC, and we trace the appearance of Baltic amber since the last quarter of the 2nd Millennium BC, progressively replacing Sicilian simetite. Integrating these data with other bodies of archaeological information, we suggest that the arrival of Baltic amber was part of broader Mediterranean exchange networks, and not necessarily the result of direct trade with the North. From a methodological perspective, thanks to the analyses carried out on both the vitreous core and the weathered surfaces of objects made of Sicilian simetite, we define the characteristic FTIR bands that allow the identification of Sicilian amber even in highly deteriorated archaeological samples.


Assuntos
Âmbar/história , Âmbar/química , Âmbar/economia , Arqueologia , Comércio/história , Europa (Continente) , Fenômenos Geológicos , História Antiga , Humanos , Joias/análise , Joias/economia , Joias/história , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Proc Natl Acad Sci U S A ; 115(26): 6739-6744, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29735653

RESUMO

Amber is an organic multicompound derivative from the polymerization of resin of diverse higher plants. Compared with other modes of fossil preservation, amber records the anatomy of and ecological interactions between ancient soft-bodied organisms with exceptional fidelity. However, it is currently suggested that ambers do not accurately record the composition of arthropod forest paleocommunities, due to crucial taphonomic biases. We evaluated the effects of taphonomic processes on arthropod entrapment by resin from the plant Hymenaea, one of the most important resin-producing trees and a producer of tropical Cenozoic ambers and Anthropocene (or subfossil) resins. We statistically compared natural entrapment by Hymenaea verrucosa tree resin with the ensemble of arthropods trapped by standardized entomological traps around the same tree species. Our results demonstrate that assemblages in resin are more similar to those from sticky traps than from malaise traps, providing an accurate representation of the arthropod fauna living in or near the resiniferous tree, but not of entire arthropod forest communities. Particularly, arthropod groups such as Lepidoptera, Collembola, and some Diptera are underrepresented in resins. However, resin assemblages differed slightly from sticky traps, perhaps because chemical compounds in the resins attract or repel specific insect groups. Ground-dwelling or flying arthropods that use the tree-trunk habitat for feeding or reproduction are also well represented in the resin assemblages, implying that fossil inclusions in amber can reveal fundamental information about biology of the past. These biases have implications for the paleoecological interpretation of the fossil record, principally of Cenozoic amber with angiosperm origin.


Assuntos
Âmbar/história , Artrópodes , Biodiversidade , Florestas , Fósseis , Resinas Vegetais , Animais , Artrópodes/classificação , Artrópodes/fisiologia , Comportamento Animal , Ecologia , Ecossistema , História Antiga , Hymenaea , Madagáscar , Especificidade da Espécie
9.
PLoS One ; 13(2): e0191669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466382

RESUMO

Among the many challenges in paleobiology is the inference and reconstruction of behaviors that rarely, if ever, leave a physical trace on the environment that is suitable for fossilization. Of particular significance are those behaviors tied to mating and courtship, individual interactions critical for species integrity and continuance, as well as those for dispersal, permitting the taxon to expand its distribution as well as access new habitats in the face of local or long-term environmental change. In this context, two recently discovered fossils from the Early Cretaceous amber of Spain (ca. 105 mya) give a detailed view of otherwise fleeting ethologies in Collembola. These occurrences are phylogenetically spaced across the class, and from species representing the two major clades of springtails-Symphypleona and Entomobryomorpha. Specifically, we report unique evidence from a symphypleonan male (Pseudosminthurides stoechus Sánchez-García & Engel, 2016) with modified antennae that may have functioned as a clasping organ for securing females during mating on water's surface, and from an aggregation of entomobryomorphan individuals (Proisotoma communis Sánchez-García & Engel, 2016) purportedly representing a swarming episode on the forest floor. We demonstrate that the mating behavioral repertoire in P. stoechus, which is associated with considerable morphological adaptations, likely implied elaborate courtship and maneuvering for guarantee sperm transfer in an epineustic species. These discoveries reveal significant behaviors consistent with modern counterparts and a generalized stasis for some ancient hexapod ethologies associated with complex mating and courtship and social or pre-social aggregations, so critical to specific constancy and dispersal.


Assuntos
Fósseis , Insetos/fisiologia , Comportamento Sexual Animal , Animais , Ecossistema , Feminino , Masculino
10.
Nat Commun ; 9(1): 472, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382823

RESUMO

The originally published version of this Article was updated shortly after publication to add the word 'Ticks' to the title, following its inadvertent removal during the production process. This has now been corrected in both the PDF and HTML versions of the Article.

11.
Nat Commun ; 8(1): 1924, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233973

RESUMO

Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod-vertebrate interactions and potential disease transmission during the Mesozoic.


Assuntos
Dinossauros/parasitologia , Fósseis , Carrapatos , Âmbar , Animais , Dinossauros/anatomia & histologia , Plumas/parasitologia , Feminino , Masculino , Sensilas , Carrapatos/anatomia & histologia , Carrapatos/classificação
12.
Sci Rep ; 7(1): 4390, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663566

RESUMO

Parental care in animal evolution has long fascinated biologists, but tracing this complex of behavioural repertoires is challenging, as these transitory states often leave no corporeal traces as fossils. Among modern invertebrates, the tanaidaceans (Malacostraca: Peracarida), a lineage of marsupial crustaceans, show an interesting variety of brooding strategies. Here we report on fossil tanaidaceans from the Cretaceous of Spain and France that provide conclusive evidence for marsupial care of brood-offspring. Two exceptionally preserved female specimens of Alavatanais carabe and A. margulisae from Late Albian Peñacerrada I amber (Spain) possess four pairs of rudimentary oostegites, indicating formation of a marsupium. From Recent data, given the taxonomic distribution of a marsupium of four pairs of oostegites, we hypothesize that this may be plesiomorphic for the Tanaidomorpha. We also report on a peculiar tanaidacean specimen referable to the fossil family Alavatanaidae, Daenerytanais maieuticus gen. et sp. nov., from Early Cenomanian La Buzinie amber (France), preserved with its marsupial pouch and content. Our discoveries provide early evidence of the peracarid reproductive strategy, as seen in modern Tanaidacea, and argue that this form of parental care may have played a role in the diversification of the lineage during this period.


Assuntos
Evolução Biológica , Crustáceos , Fósseis , Animais , Feminino , França , Espanha
13.
Curr Biol ; 27(6): 897-904, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28262492

RESUMO

During the mid-Cretaceous, angiosperms diversified from several nondiverse lineages to their current global domination [1], replacing earlier gymnosperm lineages [2]. Several hypotheses explain this extensive radiation [3], one of which involves proliferation of insect pollinator associations in the transition from gymnosperm to angiosperm dominance. However, most evidence supports gymnosperm-insect pollinator associations, buttressed by direct evidence of pollen on insect bodies, currently established for four groups: Thysanoptera (thrips), Neuroptera (lacewings), Diptera (flies), and now Coleoptera (beetles). Each group represents a distinctive pollination mode linked to a unique mouthpart type and feeding guild [4-9]. Extensive indirect evidence, based on specialized head and mouthpart morphology, is present for one of these pollinator types, the long-proboscid pollination mode [10], representing minimally ten family-level lineages of Neuroptera, Mecoptera (scorpionflies), and Diptera [8, 10, 11]. A recurring feature uniting these pollinator modes is host associations with ginkgoalean, cycad, conifer, and bennettitalean gymnosperms. Pollinator lineages bearing these pollination modes were categorized into four evolutionary cohorts during the 35-million-year-long angiosperm radiation, each defined by its host-plant associations (gymnosperm or angiosperm) and evolutionary pattern (extinction, continuation, or origination) during this interval [12]. Here, we provide the first direct evidence for one cohort, exemplified by the beetle Darwinylus marcosi, family Oedemeridae (false blister beetles), that had an earlier gymnosperm (most likely cycad) host association, later transitioning onto angiosperms [13]. This association constitutes one of four patterns explaining the plateau of family-level plant lineages generally and pollinating insects specifically during the mid-Cretaceous angiosperm radiation [12].


Assuntos
Evolução Biológica , Besouros/anatomia & histologia , Cycadopsida/fisiologia , Fósseis/anatomia & histologia , Polinização , Animais , Besouros/fisiologia , Pólen/anatomia & histologia
14.
Curr Biol ; 26(8): 1075-82, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27040775

RESUMO

Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates.


Assuntos
Carotenoides/metabolismo , Colubridae/fisiologia , Fósseis , Pigmentação da Pele/fisiologia , Animais , Cromatóforos/fisiologia , Melaninas/metabolismo
15.
Arthropod Struct Dev ; 45(2): 133-139, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26319268

RESUMO

Amber holds special paleobiological significance due to its ability to preserve direct evidence of biotic interactions and animal behaviors for millions of years. Here we review the finding of Hallucinochrysa diogenesi Pérez-de la Fuente, Delclòs, Peñalver and Engel, 2012, a morphologically atypical larva related to modern green lacewings (Insecta: Neuroptera) that was described in Early Cretaceous amber from the El Soplao outcrop (northern Spain). The fossil larva is preserved with a dense cloud of fern trichomes that corresponds to the trash packet the insect gathered and carried on its back for camouflaging and shielding, similar to that which is done by its extant relatives. This finding supports the prominent role of wildfires in the paleoecosystem and provides direct evidence of both an ancient plant-insect interaction and an early acquisition of a defensive behavior in an insect lineage. Overall, the fossil of H. diogenesi showcases the potential that the amber record offers to reconstruct not only the morphology of fossil arthropods but, more remarkably, their lifestyles and ecological relationships.


Assuntos
Mimetismo Biológico , Fósseis , Insetos/fisiologia , Âmbar , Animais , Comportamento Animal , Fósseis/anatomia & histologia , Insetos/anatomia & histologia , Insetos/crescimento & desenvolvimento , Larva/fisiologia , Espanha
16.
Curr Biol ; 25(14): 1917-23, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26166781

RESUMO

The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success.


Assuntos
Cycadopsida/fisiologia , Dípteros/fisiologia , Polinização , Âmbar , Animais , Dípteros/ultraestrutura , Fósseis/ultraestrutura , Microscopia Eletrônica de Transmissão , Mianmar , Espanha
17.
Elife ; 3: e03443, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24963145

RESUMO

Jurassic fossils of a bizarre fly larva that lived in water as a blood-sucking parasite highlight how much can be learnt from the study of the fossils of immature insects.


Assuntos
Adaptação Fisiológica/fisiologia , Dípteros/fisiologia , Larva/fisiologia , Animais
18.
Proc Natl Acad Sci U S A ; 109(52): 21414-9, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236135

RESUMO

Taxa within diverse lineages select and transport exogenous materials for the purposes of camouflage. This adaptive behavior also occurs in insects, most famously in green lacewing larvae who nestle the trash among setigerous cuticular processes, known as trash-carrying, rendering them nearly undetectable to predators and prey, as well as forming a defensive shield. We report an exceptional discovery of a green lacewing larva in Early Cretaceous amber from Spain with specialized cuticular processes forming a dorsal basket that carry a dense trash packet. The trash packet is composed of trichomes of gleicheniacean ferns, which highlight the presence of wildfires in this early forest ecosystem. This discovery provides direct evidence of an early acquisition of a sophisticated behavioral suite in stasis for over 110 million years and an ancient plant-insect interaction.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ecossistema , Insetos/fisiologia , Animais , Comportamento Animal , Processamento de Imagem Assistida por Computador , Insetos/anatomia & histologia , Larva/anatomia & histologia , Larva/fisiologia , Paleontologia , Espanha , Fatores de Tempo
19.
Zookeys ; (204): 1-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22787417

RESUMO

The Albian amber from Spain presently harbors the greatest number and diversity of amber adult fossil snakeflies (Raphidioptera). Within Baissopteridae, Baissoptera? cretaceoelectrasp. n., from the Peñacerrada I outcrop (Moraza, Burgos), is the first amber inclusion belonging to the family and described from western Eurasia, thus substantially expanding the paleogeographical range of the family formerly known from the Cretaceous of Brazil and eastern Asia. Within the family Mesoraphidiidae, Necroraphidia arcuatagen. et sp. n. and Amarantoraphidia ventolinagen. et sp. n. are described from the El Soplao outcrop (Rábago, Cantabria), whereas Styporaphidia? hispanicasp. n. and Alavaraphidia imperterritagen. et sp. n. are describedfrom Peñacerrada I. In addition, three morphospecies are recognized from fragmentary remains. The following combinations are restored: Yanoraphidia gaoi Ren, 1995, stat. rest., Mesoraphidia durlstonensis Jepson, Coram and Jarzembowski, 2009, stat. rest., and Mesoraphidia heteroneura Ren, 1997, stat. rest. The singularity of this rich paleodiversity could be due to the paleogeographic isolation of the Iberian territory and also the prevalence of wildfires during the Cretaceous.

20.
Proc Natl Acad Sci U S A ; 109(22): 8623-8, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22615414

RESUMO

Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110-105 million years ago, possibly considerably earlier.


Assuntos
Cycadopsida/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Tisanópteros/fisiologia , Animais , Evolução Biológica , Cycadopsida/classificação , Cycadopsida/parasitologia , Feminino , Interações Hospedeiro-Parasita , Paleontologia/métodos , Espanha , Especificidade da Espécie , Tisanópteros/anatomia & histologia , Tisanópteros/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA