Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
BMC Microbiol ; 20(1): 207, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660423

RESUMO

BACKGROUND: Isolation of marine microorganisms is fundamental to gather information about their physiology, ecology and genomic content. To date, most of the bacterial isolation efforts have focused on the photic ocean leaving the deep ocean less explored. We have created a marine culture collection of heterotrophic bacteria (MARINHET) using a standard marine medium comprising a total of 1561 bacterial strains, and covering a variety of oceanographic regions from different seasons and years, from 2009 to 2015. Specifically, our marine collection contains isolates from both photic (817) and aphotic layers (744), including the mesopelagic (362) and the bathypelagic (382), from the North Western Mediterranean Sea, the North and South Atlantic Ocean, the Indian, the Pacific, and the Arctic Oceans. We described the taxonomy, the phylogenetic diversity and the biogeography of a fraction of the marine culturable microorganisms to enhance our knowledge about which heterotrophic marine isolates are recurrently retrieved across oceans and along different depths. RESULTS: The partial sequencing of the 16S rRNA gene of all isolates revealed that they mainly affiliate with the classes Alphaproteobacteria (35.9%), Gammaproteobacteria (38.6%), and phylum Bacteroidetes (16.5%). In addition, Alteromonas and Erythrobacter genera were found the most common heterotrophic bacteria in the ocean growing in solid agar medium. When comparing all photic, mesopelagic, and bathypelagic isolates sequences retrieved from different stations, 37% of them were 100% identical. This percentage increased up to 59% when mesopelagic and bathypelagic strains were grouped as the aphotic dataset and compared to the photic dataset of isolates, indicating the ubiquity of some bacterial isolates along different ocean depths. Finally, we isolated three strains that represent a new species, and the genome comparison and phenotypic characterization of two of these strains (ISS653 and ISS1889) concluded that they belong to a new species within the genus Mesonia. CONCLUSIONS: Overall, this study highlights the relevance of culture-dependent studies, with focus on marine isolated bacteria from different oceanographic regions and depths, to provide a more comprehensive view of the culturable marine bacteria as part of the total marine microbial diversity.

2.
Int J Syst Evol Microbiol ; 70(7): 4329-4338, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32589567

RESUMO

Strain ISS653T, isolated from Atlantic seawater, is a yellow pigmented, non-motile, Gram-reaction-negative rod-shaped bacterium, strictly aerobic and chemoorganotrophic, slightly halophilic (1-15 % NaCl) and mesophilic (4-37 °C), oxidase- and catalase-positive and proteolytic. Its major cellular fatty acids are iso-C15 : 0, iso-C15 : 0 2-OH, and iso-C17 : 0 3-OH; the major identified phospholipid is phosphatidylethanolamine and the major respiratory quinone is MK6. Genome size is 4.28 Mbp and DNA G+C content is 34.9 mol%. 16S rRNA gene sequence similarity places the strain among members of the family Flavobacteriaceae, with the type strains of Mesonia phycicola (93.2 %), Salegentibacter mishustinae (93.1 %) and Mesonia mobilis (92.9 %) as closest relatives. Average amino acid identity (AAI) and average nucleotide identity (ANI) indices show highest values with M. mobilis (81 % AAI; 78.9 % ANI), M. phycicola (76 % AAI; 76.3 % ANI), Mesonia maritima (72 % AAI, 74.9 % ANI), Mesonia hippocampi (64 % AAI, 70.8 % ANI) and Mesonia algae (68 % AAI; 72.2 % ANI). Phylogenomic analysis using the Up-to-date-Bacterial Core Gene set (UBCG) merges strain ISS653T in a clade with species of the genus Mesonia. We conclude that strain ISS653T represents a novel species of the genus Mesonia for which we propose the name Mesonia oceanica sp. nov., and strain ISS653T (=CECT 9532T=LMG 31236T) as the type strain. A second strain of the species, ISS1889 (=CECT 30008) was isolated from Pacific Ocean seawater. Data obtained throughout the Tara oceans expedition indicate that the species is more abundant in the mesopelagic dark ocean than in the photic layer and it is more frequent in the South Pacific, Indian and North Atlantic oceans.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Oceano Atlântico , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/isolamento & purificação , Oceano Pacífico , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados
3.
Int J Syst Evol Microbiol ; 70(2): 1231-1239, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31793854

RESUMO

Strain ISS155T, isolated from surface Mediterranean seawater, has cells that are Gram-reaction-negative, motile, strictly aerobic chemoorganotrophic, oxidase-positive, unable to reduce nitrate to nitrite, and able to grow with cellulose as the sole carbon and energy source. It is mesophilic, neutrophilic, slightly halophilic and has a requirement for sodium and magnesium ions. Its 16S rRNA gene sequence places the strain among members of Cellvibrionaceae, in the Gammaproteobacteria, with Agarilytica rhodophyticola 017T as closest relative (94.3 % similarity). Its major cellular fatty acids are C18 : 1, C16 : 0 and C16 : 1; major phospholipids are phosphatidyl glycerol, phosphatidyl ethanolamine and an unidentified lipid, and the major respiratory quinone is Q8. The genome size is 6.09 Mbp and G+C content is 45.2 mol%. A phylogenomic analysis using UBCG merges strain ISS155T in a clade with A. rhodophyticola, Teredinibacter turnerae, Saccharophagus degradans and Agaribacterium haliotis type strain genomes, all of them possessing a varied array of carbohydrate-active enzymes and the potential for polysaccharide degradation. Average amino acid identity indexes determined against available Cellvibrionaceae type strain genomes show that strain ISS155T is related to them by values lower than 60 %, with a maximum of 58 % to A. rhodophyticola 017T and 57 % to T. turnerae T7902T and S. degradans 2-40T. These results, together with the low 16S rRNA gene sequence similarities and differences in phenotypic profiles, indicate that strain ISS155T represents a new genus and species in Cellvibrionaceae, for which we propose the name Thalassocella blandensis gen. nov., sp. nov., and strain ISS155T (=CECT 9533T=LMG 31237T) as the type strain.


Assuntos
Phyllobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Mar Mediterrâneo , Fosfolipídeos/química , Phyllobacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
4.
ISME J ; 13(12): 2969-2983, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31417155

RESUMO

Microdiversity can lead to different ecotypes within the same species. These are assumed to provide stability in time and space to those species. However, the role of microdiversity in the stability of whole microbial communities remains underexplored. Understanding the drivers of microbial community stability is necessary to predict community response to future disturbances. Here, we analyzed 16S rRNA gene amplicons from eight different temperate bog lakes at the 97% OTU and amplicon sequence variant (ASV) levels and found ecotypes within the same OTU with different distribution patterns in space and time. We observed that these ecotypes are adapted to different values of environmental factors such as water temperature and oxygen concentration. Our results showed that the existence of several ASVs within a OTU favored its persistence across changing environmental conditions. We propose that microdiversity aids the stability of microbial communities in the face of fluctuations in environmental factors.


Assuntos
Bactérias/isolamento & purificação , Ecossistema , Microbiota , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Lagos/microbiologia , Filogenia , RNA Ribossômico 16S/genética
5.
Microbiologyopen ; 8(10): e893, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271524

RESUMO

We used the 16S rRNA gene pyrosequencing approach to investigate the microbial diversity and community composition in several Costa Rican hot springs alongside the latitudinal axis of the country, with a range of temperatures (37-63°C), pH (6-7.5) and other geochemical conditions. A principal component analyses of the physicochemical parameters showed the samples were separated into three geochemically distinct habitats associated with the location (North, Central, and South). Cyanobacteria and Chloroflexi comprised 93% of the classified community, the former being the most abundant phylum in all samples except for Rocas Calientes 1, (63°C, pH 6), where Chloroflexi and Deinococcus-Thermus represented 84% of the OTUs. Chloroflexi were more abundant as temperature increased. Proteobacteria, Bacteriodetes and Deinococcus-Thermus comprised 5% of the OTUs represented. Other Phyla were present in very small percentages (<1%). A LINKTREE analysis showed that the community structure of the mats was shaped primarily by pH, separating samples with pH > 6.6 from samples with pH < 6.4. Thus, both pH and temperature were relevant for community composition even within the moderate ranges of variables studied. These results provide a basis for an understanding of the physicochemical influences in moderately thermophilic microbial mats.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Microbiota/efeitos dos fármacos , Microbiota/efeitos da radiação , Bactérias/genética , Análise por Conglomerados , Costa Rica , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fontes Termais , Concentração de Íons de Hidrogênio , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
6.
Mol Ecol ; 28(11): 2846-2859, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30830717

RESUMO

Bacteroidetes is one of the dominant phyla of ocean bacterioplankton, yet its diversity and population structure is poorly understood. To advance in the delineation of ecologically meaningful units within this group, we constructed near full-length 16S rRNA gene clone libraries from contrasting marine environments in the NW Mediterranean. Based on phylogeny and the associated ecological variables (depth and season), 24 different Bacteroidetes clades were delineated. By considering their relative abundance (from iTag amplicon sequencing studies), we described the distribution patterns of each of these clades, delimiting them as Ecologically Significant Taxonomic Units (ESTUs). Spatially, there was almost no overlap among ESTUs at different depths. In deep waters there was predominance of Owenweeksia, Leeuwenhoekiella, Muricauda-related genera, and some depth-associated ESTUs within the NS5 and NS2b marine clades. Seasonally, multi-annual dynamics of recurring ESTUs were present with dominance of some ESTUs within the NS4, NS5 and NS2b marine clades along most of the year, but with variable relative frequencies between months. A drastic change towards the predominance of Formosa-related ESTUs and one ESTU from the NS5 marine clade was typically present after the spring bloom. Even though there are no isolates available for these ESTUs to determine their physiology, correlation analyses identified the environmental preference of some of them. Overall, our results suggest that there is a high degree of niche specialisation within these closely related clades. This work constitutes a step forward in disentangling the ecology of marine Bacteroidetes, which are essential players in organic matter processing in the oceans.


Assuntos
Organismos Aquáticos/genética , Bacteroidetes/genética , Ecossistema , Biodiversidade , Microbiologia Ambiental , Variação Genética , Mar Mediterrâneo , Filogenia , Estações do Ano , Fatores de Tempo
7.
ISME J ; 13(5): 1183-1197, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30643200

RESUMO

Dimethylsulfoniopropionate (DMSP) is produced mainly by phytoplankton and bacteria. It is relatively abundant and ubiquitous in the marine environment, where bacterioplankton make use of it readily as both carbon and sulfur sources. In one transformation pathway, part of the molecule becomes dimethylsulfide (DMS), which escapes into the atmosphere and plays an important role in the sulfur exchange between oceans and atmosphere. Through its other dominant catabolic pathway, bacteria are able to use it as sulfur source. During the past few years, a number of genes involved in its transformation have been characterized. Identifying genes in taxonomic groups not amenable to conventional methods of cultivation is challenging. Indeed, functional annotation of genes in environmental studies is not straightforward, considering that particular taxa are not well represented in the available sequence databases. Furthermore, many genes belong to families of paralogs with similar sequences but perhaps different functions. In this study, we develop in silico approaches to infer protein function of an environmentally important gene (dmdA) that carries out the first step in the sulfur assimilation from DMSP. The method combines a set of tools to annotate a targeted gene in genome databases and metagenome assemblies. The method will be useful to identify genes that carry out key biochemical processes in the environment.


Assuntos
Bactérias/metabolismo , Genes Bacterianos , Metagenoma , Plâncton/metabolismo , Água do Mar/microbiologia , Compostos de Sulfônio/metabolismo , Bactérias/genética , Simulação por Computador , Anotação de Sequência Molecular , Oceanos e Mares , Fitoplâncton/metabolismo , Alinhamento de Sequência , Enxofre/metabolismo
8.
Stand Genomic Sci ; 13: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344889

RESUMO

Members of the genus Cylindrospermopsis represent an important environmental and health concern. Strains CS-508 and MVCC14 of C. raciborskii were isolated from freshwater reservoirs located in Australia and Uruguay, respectively. While CS-508 has been reported as non-toxic, MVCC14 is a saxitoxin (STX) producer. We annotated the draft genomes of these C. raciborskii strains using the assembly of reads obtained from Illumina MiSeq sequencing. The final assemblies resulted in genome sizes close to 3.6 Mbp for both strains and included 3202 ORFs for CS-508 (in 163 contigs) and 3560 ORFs for MVCC14 (in 99 contigs). Finally, both the average nucleotide identity (ANI) and the similarity of gene content indicate that these two genomes should be considered as strains of the C. raciborskii species.

9.
Front Microbiol ; 9: 2353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333812

RESUMO

Composition, carbon and nitrogen uptake, and gene transcription of microbial mat communities in Porcelana neutral hot spring (Northern Chilean Patagonia) were analyzed using metagenomics, metatranscriptomics and isotopically labeled carbon (H13CO3) and nitrogen (15NH4Cl and K15NO3) assimilation rates. The microbial mat community included 31 phyla, of which only Cyanobacteria and Chloroflexi were dominant. At 58°C both phyla co-occurred, with similar contributions in relative abundances in metagenomes and total transcriptional activity. At 66°C, filamentous anoxygenic phototrophic Chloroflexi were >90% responsible for the total transcriptional activity recovered, while Cyanobacteria contributed most metagenomics and metatranscriptomics reads at 48°C. According to such reads, phototrophy was carried out both through oxygenic photosynthesis by Cyanobacteria (mostly Mastigocladus) and anoxygenic phototrophy due mainly to Chloroflexi. Inorganic carbon assimilation through the Calvin-Benson cycle was almost exclusively due to Mastigocladus, which was the main primary producer at lower temperatures. Two other CO2 fixation pathways were active at certain times and temperatures as indicated by transcripts: 3-hydroxypropionate (3-HP) bi-cycle due to Chloroflexi and 3-hydroxypropionate-4-hydroxybutyrate (HH) cycle carried out by Thaumarchaeota. The active transcription of the genes involved in these C-fixation pathways correlated with high in situ determined carbon fixation rates. In situ measurements of ammonia assimilation and nitrogen fixation (exclusively attributed to Cyanobacteria and mostly to Mastigocladus sp.) showed these were the most important nitrogen acquisition pathways at 58 and 48°C. At 66°C ammonia oxidation genes were actively transcribed (mostly due to Thaumarchaeota). Reads indicated that denitrification was present as a nitrogen sink at all temperatures and that dissimilatory nitrate reduction to ammonia (DNRA) contributed very little. The combination of metagenomic and metatranscriptomic analysis with in situ assimilation rates, allowed the reconstruction of day and night carbon and nitrogen assimilation pathways together with the contribution of keystone microorganisms in this natural hot spring microbial mat.

10.
Front Microbiol ; 9: 2039, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233525

RESUMO

Cyanophages are viruses with a wide distribution in aquatic ecosystems, that specifically infect Cyanobacteria. These viruses can be readily isolated from marine and fresh waters environments; however, their presence in cosmopolitan thermophilic phototrophic mats remains largely unknown. This study investigates the morphological diversity (TEM), taxonomic composition (metagenomics), and active infectivity (metatranscriptomics) of viral communities over a thermal gradient in hot spring phototrophic mats from Northern Patagonia (Chile). The mats were dominated (up to 53%) by cosmopolitan thermophilic filamentous true-branching cyanobacteria from the genus Mastigocladus, the associated viral community was predominantly composed of Caudovirales (70%), with most of the active infections driven by cyanophages (up to 90% of Caudovirales transcripts). Metagenomic assembly lead to the first full genome description of a T7-like Thermophilic Cyanophage recovered from a hot spring (Porcelana Hot Spring, Chile), with a temperature of 58°C (TC-CHP58). This could potentially represent a world-wide thermophilic lineage of podoviruses that infect cyanobacteria. In the hot spring, TC-CHP58 was active over a temperature gradient from 48 to 66°C, showing a high population variability represented by 1979 single nucleotide variants (SNVs). TC-CHP58 was associated to the Mastigocladus spp. by CRISPR spacers. Marked differences in metagenomic CRISPR loci number and spacers diversity, as well as SNVs, in the TC-CHP58 proto-spacers at different temperatures, reinforce the theory of co-evolution between natural virus populations and cyanobacterial hosts. Considering the importance of cyanobacteria in hot spring biogeochemical cycles, the description of this new cyanopodovirus lineage may have global implications for the functioning of these extreme ecosystems.

11.
Front Microbiol ; 8: 1317, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790980

RESUMO

Marine Bacteroidetes constitute a very abundant bacterioplankton group in the oceans that plays a key role in recycling particulate organic matter and includes several photoheterotrophic members containing proteorhodopsin. Relatively few marine Bacteroidetes species have been described and, moreover, they correspond to cultured isolates, which in most cases do not represent the actual abundant or ecologically relevant microorganisms in the natural environment. In this study, we explored the microdiversity of 98 Single Amplified Genomes (SAGs) retrieved from the surface waters of the underexplored North Indian Ocean, whose most closely related isolate is Kordia algicida OT-1. Using Multi Locus Sequencing Analysis (MLSA) we found no microdiversity in the tested conserved phylogenetic markers (16S rRNA and 23S rRNA genes), the fast-evolving Internal Transcribed Spacer and the functional markers proteorhodopsin and the beta-subunit of RNA polymerase. Furthermore, we carried out a Fragment Recruitment Analysis (FRA) with marine metagenomes to learn about the distribution and dynamics of this microorganism in different locations, depths and size fractions. This analysis indicated that this taxon belongs to the rare biosphere, showing its highest abundance after upwelling-induced phytoplankton blooms and sinking to the deep ocean with large organic matter particles. This uncultured Kordia lineage likely represents a novel Kordia species (Kordia sp. CFSAG39SUR) that contains the proteorhodopsin gene and has a widespread spatial and vertical distribution. The combination of SAGs and MLSA makes a valuable approach to infer putative ecological roles of uncultured abundant microorganisms.

12.
13.
Microbiol Mol Biol Rev ; 80(4): 929-54, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27630250

RESUMO

The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Transporte de Íons/fisiologia , Rodopsinas Microbianas/metabolismo , Organismos Aquáticos/metabolismo , Archaea/genética , Bactérias/genética , Expressão Gênica/genética , Transferência Genética Horizontal/genética , Variação Genética/genética , Luz , Rodopsinas Microbianas/genética , Água do Mar/microbiologia , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
PLoS One ; 11(7): e0159195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442429

RESUMO

High-throughput sequencing (HTS) techniques have suggested the existence of a wealth of species with very low relative abundance: the rare biosphere. We attempted to exhaustively map this rare biosphere in two water samples by performing an exceptionally deep pyrosequencing analysis (~500,000 final reads per sample). Species data were derived by a 97% identity criterion and various parametric distributions were fitted to the observed counts. Using the best-fitting Sichel distribution we estimate a total species richness of 1,568-1,669 (95% Credible Interval) and 5,027-5,196 for surface and deep water samples respectively, implying that 84-89% of the total richness in those two samples was sequenced, and we predict that a quadrupling of the present sequencing effort would suffice to observe 90% of the total richness in both samples. Comparing the HTS results with a culturing approach we found that most of the cultured taxa were not obtained by HTS, despite the high sequencing effort. Culturing therefore remains a useful tool for uncovering marine bacterial diversity, in addition to its other uses for studying the ecology of marine bacteria.


Assuntos
Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Bactérias/isolamento & purificação , Sequência de Bases , Bases de Dados Genéticas , Mar Mediterrâneo , Especificidade da Espécie
15.
Proc Natl Acad Sci U S A ; 113(24): 6585-7, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27302946
16.
ISME J ; 10(12): 2946-2957, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27137127

RESUMO

The assimilation of organic nutrients by autotrophs, a form of mixotrophy, has been demonstrated in the globally abundant marine picocyanobacterial genera Prochlorococcus and Synechococcus. However, the range of compounds used and the distribution of organic compound uptake genes within picocyanobacteria are unknown. Here we analyze genomic and metagenomic data from around the world to determine the extent and distribution of mixotrophy in these phototrophs. Analysis of 49 Prochlorococcus and 18 Synechococcus isolate genomes reveals that all have the transporters necessary to take up amino acids, peptides and sugars. However, the number and type of transporters and associated catabolic genes differ between different phylogenetic groups, with low-light IV Prochlorococcus, and 5.1B, 5.2 and 5.3 Synechococcus strains having the largest number. Metagenomic data from 68 stations from the Tara Oceans expedition indicate that the genetic potential for mixotrophy in picocyanobacteria is globally distributed and differs between clades. Phylogenetic analyses indicate gradual organic nutrient transporter gene loss from the low-light IV to the high-light II Prochlorococcus. The phylogenetic differences in genetic capacity for mixotrophy, combined with the ubiquity of picocyanobacterial organic compound uptake genes suggests that mixotrophy has a more central role in picocyanobacterial ecology than was previously thought.


Assuntos
Prochlorococcus/genética , Água do Mar/microbiologia , Synechococcus/genética , Genoma Bacteriano , Genômica , Oceanos e Mares , Filogenia , Prochlorococcus/isolamento & purificação , Prochlorococcus/metabolismo , Synechococcus/isolamento & purificação , Synechococcus/metabolismo
17.
PLoS One ; 11(4): e0153215, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055030

RESUMO

The gastrointestinal tract microbiota is known to play very important roles in the well being of animals. It is a complex community composed by hundreds of microbial species interacting closely among them and with their host, that is, a microbial ecosystem. The development of high throughput sequencing techniques allows studying the diversity of such communities in a realistic way and considerable work has been carried out in mammals and some birds such as chickens. Wild birds have received less attention and in particular, in the case of penguins, only a few individuals of five species have been examined with molecular techniques. We collected cloacal samples from Chinstrap penguins in the Vapour Col rookery in Deception Island, Antarctica, and carried out pyrosequencing of the V1-V3 region of the 16S rDNA in samples from 53 individuals, 27 adults and 26 chicks. This provided the first description of the Chinstrap penguin gastrointestinal tract microbiota and the most extensive in any penguin species. Firmicutes, Bacteoridetes, Proteobacteria, Fusobacteria, Actinobacteria, and Tenericutes were the main components. There were large differences between chicks and adults. The former had more Firmicutes and the latter more Bacteroidetes and Proteobacteria. In addition, adults had richer and more diverse bacterial communities than chicks. These differences were also observed between parents and their offspring. On the other hand, nests explained differences in bacterial communities only among chicks. We suggest that environmental factors have a higher importance than genetic factors in the microbiota composition of chicks. The results also showed surprisingly large differences in community composition with other Antarctic penguins including the congeneric Adélie and Gentoo penguins.


Assuntos
Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Variação Genética/genética , Spheniscidae/classificação , Spheniscidae/genética , Fatores Etários , Animais , DNA Bacteriano/genética , DNA Ribossômico/genética , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Spheniscidae/microbiologia
18.
Front Microbiol ; 7: 337, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047459

RESUMO

In this study we assess global biogeography and correlation patterns among three components of microbial life: bacteria, microeukaryotes, and T4-like myoviruses. In addition to environmental and biogeographical considerations, we have focused our study on samples from high-latitude pristine lakes from both poles, since these simple island-like ecosystems represent ideal ecological models to probe the relationships among microbial components and with the environment. Bacterial assemblages were dominated by members of the same groups found to dominate freshwater ecosystems elsewhere, and microeukaryotic assemblages were dominated by photosynthetic microalgae. Despite inter-lake variations in community composition, the overall percentages of OTUs shared among sites was remarkable, indicating that many microeukaryotic, bacterial, and viral OTUs are globally-distributed. We observed an intriguing negative correlation between bacterial and microeukaryotic diversity values. Notably, our analyses show significant global correlations between bacterial and microeukaryotic community structures, and between the phylogenetic compositions of bacterial and T4-like virus assemblages. Overall, environmental filtering emerged as the main factor driving community structures.

19.
Front Microbiol ; 7: 433, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065987

RESUMO

Two complementary forces shape microbial genomes: vertical inheritance of genes by phylogenetic descent, and acquisition of new genes related to adaptation to particular habitats and lifestyles. Quantification of the relative importance of each driving force proved difficult. We determined the contribution of each factor, and identified particular genes or biochemical/cellular processes linked to environmental preferences (i.e., propensity of a taxon to live in particular habitats). Three types of data were confronted: (i) complete genomes, which provide gene content of different taxa; (ii) phylogenetic information, via alignment of 16S rRNA sequences, which allowed determination of the distance between taxa, and (iii) distribution of species in environments via 16S rRNA sampling experiments, reflecting environmental preferences of different taxa. The combination of these three datasets made it possible to describe and quantify the relationships among them. We found that, although phylogenetic descent was responsible for shaping most genomes, a discernible part of the latter was correlated to environmental adaptations. Particular families of genes were identified as environmental markers, as supported by direct studies such as metagenomic sequencing. These genes are likely important for adaptation of bacteria to particular conditions or habitats, such as carbohydrate or glycan metabolism genes being linked to host-associated environments.

20.
ISME J ; 9(8): 1835-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25700336

RESUMO

Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions.


Assuntos
Adaptação Fisiológica , Bactérias/isolamento & purificação , Oceanos e Mares , Rodopsinas Microbianas/genética , Água do Mar , Regiões Árticas , Bactérias/genética , Bactérias/metabolismo , Impressões Digitais de DNA , DNA Bacteriano/análise , Flavobacterium/genética , Filogenia , Rodopsinas Microbianas/metabolismo , Estações do Ano , Água do Mar/química , Água do Mar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA