*Nat Commun ; 13(1): 1552, 2022 Mar 23.*

##### RESUMO

We report an experimental realization of a three-terminal photonic heat transport device based on a superconducting quantum circuit. The central element of the device is a flux qubit made of a superconducting loop containing three Josephson junctions, which can be tuned by magnetic flux. It is connected to three resonators terminated by resistors. By heating one of the resistors and monitoring the temperatures of the other two, we determine photonic heat currents in the system and demonstrate their tunability by magnetic field at the level of 1 aW. We determine system parameters by performing microwave transmission measurements on a separate nominally identical sample and, in this way, demonstrate clear correlation between the level splitting of the qubit and the heat currents flowing through it. Our experiment is an important step towards realization of heat transistors, heat amplifiers, masers pumped by heat and other quantum heat transport devices.

*Nat Nanotechnol ; 17(3): 239-243, 2022 Mar.*

##### RESUMO

Single-electron transport relates an operation frequency f to the emitted current I through the electron charge e as I = ef (refs. 1-5). Similarly, direct frequency-to-power conversion (FPC) links both quantities through a known energy. FPC is a natural candidate for a power standard resorting to the most basic definition of the watt: energy emitted per unit of time. The energy is traceable to Planck's constant and the time is in turn traceable to the unperturbed ground state hyperfine transition frequency of the caesium 133 atom. Hence, FPC comprises a simple and elegant way to realize the watt6. In this spirit, single-photon emission7,8 and detection9 at known rates have been proposed as radiometric standards and experimentally realized10-14. However, power standards are so far only traceable to electrical units, that is, to the volt and the ohm6,15-17. In this Letter, we demonstrate an alternative proposal based on solid-state direct FPC using a hybrid single-electron transistor (SET). The SET injects n (integer) quasi-particles (QPs) per cycle into the two superconducting leads with discrete energies close to their superconducting gap Δ, even at zero source-drain voltage. Furthermore, the application of a bias voltage can vary the distribution of the power among the two leads, allowing for an almost equal power injection nΔf into the two. While in single-electron transport current is related to a fixed universal constant (e), in our approach Δ is a material-dependent quantity. We estimate that under optimized conditions errors can be well below 1%.

*Nat Commun ; 11(1): 4326, 2020 Aug 28.*

##### RESUMO

Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results highlight the consequences of charge-phase conjugation on heat transport, with promising applications in thermal management of quantum devices and design of microbolometers.

*Nano Lett ; 20(7): 5065-5071, 2020 Jul 08.*

##### RESUMO

Quasiparticle (qp) poisoning is a major issue that impairs the operation of various superconducting devices. Even though these devices are often operated at temperatures well below the critical point where the number density of excitations is expected to be exponentially suppressed, their bare operation and stray microwave radiation excite the non-equilibrium qp's. Here we use voltage-biased superconducting junctions to demonstrate and quantify qp extraction in the turnstile operation of a superconductor-insulator-normal metal-insulator-superconductor single-electron transistor. In this operation regime, excitations are injected into the superconducting leads at a rate proportional to the driving frequency. We reach a reduction of density by an order of magnitude even for the highest injection rate of 2.4 × 108 qp's per second when extraction is turned on.

*Phys Rev Lett ; 122(23): 230602, 2019 Jun 14.*

##### RESUMO

We investigate the fluctuations of the time elapsed until the electric charge transferred through a conductor reaches a given threshold value. For this purpose, we measure the distribution of the first-passage times for the net number of electrons transferred between two metallic islands in the Coulomb blockade regime. Our experimental results are in excellent agreement with numerical calculations based on a recent theory describing the exact first-passage-time distributions for any nonequilibrium stationary Markov process. We also derive a simple analytical approximation for the first-passage-time distribution, which takes into account the non-Gaussian statistics of the electron transport, and show that it describes the experimental distributions with high accuracy. This universal approximation describes a wide class of stochastic processes, and can be used beyond the context of mesoscopic charge transport. In addition, we verify experimentally a fluctuation relation between the first-passage-time distributions for positive and negative thresholds.

*Phys Rev Lett ; 122(15): 150604, 2019 Apr 19.*

##### RESUMO

We experimentally realize protocols that allow us to extract work beyond the free energy difference from a single-electron transistor at the single thermodynamic trajectory level. With two carefully designed out-of-equilibrium driving cycles featuring kicks of the control parameter, we demonstrate work extraction up to large fractions of k_{B}T or with probabilities substantially greater than 1/2, despite the zero free energy difference over the cycle. Our results are explained in the framework of nonequilibrium fluctuation relations. We thus show that irreversibility can be used as a resource for optimal work extraction even in the absence of feedback from an external operator.