Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.386
Filtrar
1.
Neural Regen Res ; 17(3): 618-624, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380902

RESUMO

Patients with type 2 diabetes mellitus (T2DM) often have cognitive impairment and structural brain abnormalities. The magnetic resonance imaging (MRI)-based brain atrophy and lesion index can be used to evaluate common brain changes and their correlation with cognitive function, and can therefore also be used to reflect whole-brain structural changes related to T2DM. A total of 136 participants (64 men and 72 women, aged 55-86 years) were recruited for our study between January 2014 and December 2016. All participants underwent MRI and Mini-Mental State Examination assessment (including 42 healthy control, 38 T2DM without cognitive impairment, 26 with cognitive impairment but without T2DM, and 30 T2DM with cognitive impairment participants). The total and sub-category brain atrophy and lesion index scores in patients with T2DM with cognitive impairment were higher than those in healthy controls. Differences in the brain atrophy and lesion index of gray matter lesions and subcortical dilated perivascular spaces were found between non-T2DM patients with cognitive impairment and patients with T2DM and cognitive impairment. After adjusting for age, the brain atrophy and lesion index retained its capacity to identify patients with T2DM with cognitive impairment. These findings suggest that the brain atrophy and lesion index, based on T1-weighted and T2-weighted imaging, is of clinical value for identifying patients with T2DM and cognitive impairment. Gray matter lesions and subcortical dilated perivascular spaces may be potential diagnostic markers of T2DM that is complicated by cognitive impairment. This study was approved by the Medical Ethics Committee of University of South China (approval No. USC20131109003) on November 9, 2013, and was retrospectively registered with the Chinese Clinical Trial Registry (registration No. ChiCTR1900024150) on June 27, 2019.

2.
Environ Res ; 203: 111894, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34418448

RESUMO

The Tibetan Plateau (TP) has a variety of vegetation types that range from alpine tundra to tropic evergreen forest, which play an important role in the global carbon (C) cycle and is extremely vulnerable to climate change. The vegetation C uptake is crucial to the ecosystem C sequestration. Moreover, net reduction in vegetation C uptake (NRVCU) will strongly affect the C balance of terrestrial ecosystem. Until now, there is limited knowledge on the recovery process of vegetation net C uptake and the spatial-temporal patterns of NRVCU after the disturbance that caused by climate change and human activities. Here, we used the MODIS-derived net primary production to characterize the spatial-temporal patterns of NRVCU. We further explored the influence factors of the net reduction rate in vegetation C uptake (NRRVCU) and recovery processes of vegetation net C uptake across a unique gradient zone on the TP. Results showed that the total net reduction amount of vegetation C uptake gradually decreased from 2000 to 2015 on the TP (Slope = -0.002, P < 0.05). Specifically, an increasing gradient zone of multi-year average of net reduction rate in vegetation carbon uptake (MYANRRVCU) from east to west was observed. In addition, we found that the recovery of vegetation net C uptake after the disturbance caused by climate change and anthropogenic disturbance in the gradient zone were primarily dominated by precipitation and temperature. The findings revealed that the effects of climate change on MYANRRVCU and vegetation net C uptake recovery differed significantly across geographical space and vegetation types. Our results highlight that the biogeographic characteristics of the TP should be considered for combating future climate change.

3.
J Virol Methods ; 299: 114343, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34728269

RESUMO

Bovine respiratory disease complex (BRDC) is a serious disease affecting feedlot cattle in China and likely other places worldwide. Bovine viral diarrhea virus (BVDV) and bovine parainfluenza virus type 3 (BPIV3) are principally responsible for causing BRDC, and are a major strain to the industrial economy. Eradication of these viruses/disease requires swift viral identification and treatment. Hence, this study established a fast and easy procedure of BVDV and BPIV3 identification that employs reverse transcription recombinase polymerase amplification (RT-RPA) and lateral flow dipstick (LFD), and uses primers and lateral flow (LF) probe targeting the 5'-UTR gene of BVDV and phosphoprotein P gene of BPIV3, respectively. Our assay was able to successfully amplify BVDV and BPIV3 RNA within 25 min at 35 °C using RT-RPA, with products visible on the LFD within 5 min at room temperature (RT). The lowest detection limits were 50 RNA molecules for BVDV and 34 RNA molecules for BPIV3 per reaction. We also demonstrated that the established dual RT-RPA LFD assay was precise and targeted, harboring excellent potential to become an onsite molecular diagnostic tool in the detection of BVDV and BPIV3. This method can detect BVDV (Pestivirus A, B) and BPIV3, and exhibit no cross-reaction with other viruses like the classical swine fever virus (CSFV) and infectious bovine rhinotracheitis virus (IBRV). The assay performance was further assessed with clinical samples, and demonstrated good performance in comparison to real-time RT-PCR (RT-qPCR). Moreover, the RT-RPA LFD assay was comparitively rapid and required minimal training.

4.
J Colloid Interface Sci ; 607(Pt 1): 502-513, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509121

RESUMO

HYPOTHESIS: The Landau-Levich-Derjaguin (LLD) theory is widely applied to predict the film thickness in the dip-coating process. However, the theory was designed only for flat plates and thin fibers. Fifty years ago, White and Tallmadge attempted to generalize the LLD theory to thick rods using a numerical solution for a static meniscus and the LLD theory to forcedly match their numeric solution with the LLD asymptotics. The White-Talmadge solution has been criticized for not being rigorous yet widely used in engineering applications mostly owing to the lack of alternative solutions. A new set of experiments significantly expanding the range of White-Tallmadge conditions showed that their theory cannot explain the experimental results. We then hypothesized that the results of LLD theory can be improved by restoring the non-linear meniscus curvature in the equation. With this modification, the obtained equation should be able to describe static menisci on any cylindrical rods and the film profiles observed at non-zero rod velocity. EXPERIMENT: To test the hypothesis, we distinguished capillary forces from viscous forces by running experiments with different rods and at different withdrawal velocities and video tracking the menisci profiles and measuring the weight of deposited films. The values of film thickness were then fitted with a mathematical model based on the modified LLD equation. We also fitted the meniscus profiles. FINDINGS: The results show that the derived equation allows one to reproduce the results of the LLD theory and go far beyond those to include rods of different radii. A new set of experimental data together with the White-Tallmadge experimental data are explained with the modified LLD theory. A set of simple formulas approximating numeric results have been derived. These formulas can be used in engineering applications for the prediction of the coating thickness.

5.
J Hazard Mater ; 423(Pt B): 127210, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34555768

RESUMO

Chlorinated-PAHs (ClPAHs) are widely detected in the soil surface and atmospheric particles. However, the underlying mechanisms of their photodegradation are not well understood. In the present study, the formation of radicals on ClPAHs-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and the impact of relative humidity (RH) was systematically explored. ClPAHs removal (> 75%) was attributed to electron transfer and •OH attack. The degradation easiness of ClPAHs follows: 2-ClNAP >2-ClANT >9-ClPHE >1-ClPYR. Light irradiation significantly improved the generation of reactive oxygen species (ROS, such as •OH and •O2-), and further generate a series of hydroxylated products of ClPAHs. Persistent free radicals (PFRs) were only detected on clay minerals contaminated with 2-ClANT and 1-ClPYR. RH 10-80%, the concentration of •OH and •O2- increased by 1.07 and 62.79 times respectively, which facilitated transformation of PFRs and ClPAHs degradation. The results of quantum chemical calculations indicate that the initial reaction of ClPAHs photodegradation is mediated by the substitution of •OH for chlorine groups. The present work implies that higher humidity may decrease the generation of PFRs on clay minerals and help mitigate the threats of PFRs and ClPAHs to human health.

6.
Adv Sci (Weinh) ; : e2104363, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850603

RESUMO

Powered by inexhaustible solar energy, photoelectrochemical (PEC) hydrogen/ammonia production and reduction of carbon dioxide to high added-value chemicals in eco-friendly and mild conditions provide a highly attractive solution to carbon neutrality. Recently, substantial advances have been achieved in PEC systems by improving light absorption and charge separation/transfer in PEC devices. However, less attention is given to the atomic design of photoelectrocatalysts to facilitate the final catalytic reactions occurring at photoelectrode surface, which largely limits the overall photo-to-energy conversion of PEC system. Fundamental catalytic mechanisms and recent progress in atomic design of PEC materials are comprehensively reviewed by engineering of defect, dopant, facet, strain, and single atom to enhance the activity and selectivity. Finally, the emerging challenges and research directions in design of PEC systems for future photo-to-energy conversions are proposed.

7.
Front Oncol ; 11: 761107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858839

RESUMO

Statins is widely used in clinical practice as lipid-lowering drugs and has been proven to be effective in the treatment of cardiovascular, endocrine, metabolic syndrome and other diseases. The latest preclinical evidence shows that statins have anti-proliferation, pro-apoptotic, anti-invasion and radiotherapy sensitization effects on tumor cells, suggesting that statins may become a new type of anti-tumor drugs. For a long time, mevalonate pathway has been proved to play a supporting role in the development of tumor cells. As an effective inhibitor of mevalonate pathway, statins have been proved to have a direct auxiliary anti-tumor effect in a large number of studies. In addition, anti-tumor effects of statins through ferroptosis, pyroptosis, autophagy and tumor microenvironment (TME) have also been gradually discovered. However, the specific mechanism of the antitumor effect of statins in the tumor microenvironment has not been clearly elucidated. Herein, we reviewed the antitumor effects of statins in tumor microenvironment, focusing on hypoxia microenvironment, immune microenvironment, metabolic microenvironment, acid microenvironment and mechanical microenvironment.

8.
Front Med (Lausanne) ; 8: 744839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34765619

RESUMO

Gastric cancer is one of the most common cause of cancer related deaths worldwide which results in malignant tumors in the digestive tract. The only radical treatment option available is surgical resection. Recently, the implementation of neoadjuvant chemotherapy resulted in 5-year survival rates of 95% for early gastric cancer. The main reason of treatment failure is that early diagnosis is minimal, with many patients presenting advanced stages. Hence, the greatest benefit of radical resection is missed. Consequently, the main therapeutic approach for advanced gastric cancer is combined surgery with neoadjuvant chemotherapy, targeted therapy, or immunotherapy. In this review, we will discuss the various treatment options for advanced gastric cancer. Clinical practice and clinical research is the most practical way of reaching new advents in terms of patients' characteristics, optimum drug choice, and better prognosis. With the recent advances in gastric cancer diagnosis, staging, treatment, and prognosis, we are evident that the improvement of survival in this patient population is just a matter of time.

9.
Front Pharmacol ; 12: 732478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776958

RESUMO

Background and Aims: Therapeutic drugs that are used to treat cholestatic liver disease are limited; however, the results of clinical trials on primary biliary cholangitis treatment targeting peroxisome proliferator-activated receptors (PPARs) are encouraging. In this study, we aimed to identify the effects of MBT1805, a novel balanced PPARα/γ/δ agonist, on cholestasis induced by α-naphthylisothiocyanate (ANIT) and elucidate the underlying mechanisms through untargeted and bile acid-targeted metabolomic analysis. Methods: Levels of serum biochemical indicators (transaminase, aspartate transaminase, alkaline phosphatase, and total bilirubin) and liver histopathology were analyzed to evaluate the therapeutic effects of MBT1805 on ANIT-induced cholestasis in C57BL/6 mice. Untargeted and bile acid-targeted metabolomic analysis of liver tissues was performed using ultrahigh-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MC/MC). qRT-PCR and Western blot analysis were carried out to measure the expression of key enzymes and transporters regulating bile acid synthesis, biotransformation, and transport. Results: MBT1805 significantly improved abnormal levels of liver biochemical indicators and gallbladder enlargement induced by ANIT. Histopathological analysis showed that MBT1805 effectively relieved ANIT-induced necrosis, vacuolation, and inflammatory infiltration. Untargeted metabolomic analysis identified 27 metabolites that were involved in the primary biliary acid biosynthesis pathway. In addition, bile acid-targeted metabolomics showed that MBT1805 could alleviate the abnormal bile acid content and composition induced by ANIT. Furthermore, qRT-PCR and Western blot results confirmed that MBT1805 could effectively regulate bile acid synthesis, biotransformation, and transport which helps relieve cholestasis. Conclusions: MBT1805 is a potential candidate drug for cholestasis, with a balanced PPARα/γ/δ activation effect.

10.
Front Pharmacol ; 12: 748658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776966

RESUMO

Cytochrome P450 (CYP) is the most important phase I drug-metabolizing enzyme, and the effect of drugs on CYP enzymes can lead to decreased pharmacological efficacy or enhanced toxicity of drugs, but there are many deficiencies in the evaluation models of CYP enzymes in vitro. Human-induced hepatocytes (hiHeps) derived from human fibroblasts by transdifferentiation have mature hepatocyte characteristics. The aim was to establish a novel evaluation system for the effect of drugs on CYP3A4, 1A2, 2B6, 2C9, and 2C19 in vitro based on hiHeps. Curcumin can inhibit many CYP enzymes in vitro, and so the inhibition of curcumin on CYP enzymes was compared by human liver microsomes, human hepatocytes, and hiHeps using UPLC-MS and the cocktail method. The results showed that the IC50 values of CYP enzymes in the hiHeps group were similar to those in the hepatocytes group, which proved the effectiveness and stability of the novel evaluation system in vitro. Subsequently, the evaluation system was applied to study the inhibitory activity of notoginseng total saponins (NS), safflower total flavonoids (SF), and the herb pair of NS-SF on five CYP enzymes. The mechanism of improving efficacy after NS and SF combined based on CYP enzymes was elucidated in vitro. The established evaluation system will become a powerful tool for the research of the effect of drugs on the activity of CYP enzymes in vitro, which has broad application prospects in drug research.

11.
Oxid Med Cell Longev ; 2021: 3672112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777684

RESUMO

Transmembrane protein 206 (TMEM206), a proton-activated chloride channel, has been implicated in various biochemical processes, including bone metabolism, and has emerged as a novel cancer-related protein in multiple tumor types. However, its role in primary malignant bone tumors, particularly in osteosarcoma (OS), remains unclear. This study is aimed at exploring the effects of TMEM206 gene silencing on the proliferation, migration, invasion, and metastasis of human OS cells in vitro and in vivo using an shRNA-knockdown strategy. We found that TMEM206 is frequently overexpressed and that high levels of TMEM206 correlated with clinical stage and pulmonary metastasis in patients with OS. We provided evidence that TMEM206-silenced OS cancer cells exhibit decreased proliferation, migration, and invasion in vitro. Mechanistically, we identified ß-catenin, a key member of Wnt/ß-catenin signaling, as a downstream effector of TMEM206. TMEM206 silencing inhibits the Wnt/ß-catenin signaling pathway in expression rescue experiments, confirming that TMEM206 silencing attenuates OS cell tumorigenic behavior, at least in part, via the ß-catenin mediated downregulation of Wnt/ß-catenin signaling. More importantly, TMEM206 knockdown-related phenotype changes were replicated in a xenograft nude mouse model where pulmonary metastases of OS cells were suppressed. Together, our results demonstrate that silencing TMEM206 negatively modulates the Wnt/ß-catenin signaling pathway via ß-catenin to suppress proliferation, migration, invasion, and metastasis in OS carcinogenesis, suggesting TMEM206 as a potential oncogenic biomarker and a potential target for OS treatment.

12.
Front Cardiovasc Med ; 8: 724271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778395

RESUMO

Texture analysis (TA) is a newly arisen field that can detect the invisible MRI signal changes among image pixels. Myocardial infarction (MI) is cardiomyocyte necrosis caused by myocardial ischemia and hypoxia, becoming the primary cause of death and disability worldwide. In recent years, various TA studies have been performed in patients with MI and show a good clinical application prospect. This review briefly presents the main pathogenesis and pathophysiology of MI, introduces the overview and workflow of TA, and summarizes multiple magnetic resonance TA (MRTA) clinical applications in MI. We also discuss the facing challenges currently for clinical utilization and propose the prospect.

13.
Small ; : e2105682, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34786849

RESUMO

Electrochemical CO2 reduction reaction (CO2 RR) is a promising approach to convert CO2 to carbon-neutral fuels using external electric powers. Here, the Bi2 S3 -Bi2 O3 nanosheets possessing substantial interface being exposed between the connection of Bi2 S3 and Bi2 O3 are prepared and subsequently demonstrate to improve CO2 RR performance. The electrocatalyst shows formate Faradaic efficiency (FE) of over 90% in a wide potential window. A high partial current density of about 200 mA cm-2 at -1.1 V and an ultralow onset potential with formate FE of 90% are achieved in a flow cell. The excellent electrocatalytic activity is attributed to the fast-interfacial charge transfer induced by the electronic interaction at the interface, the increased number of active sites, and the improved CO2 adsorption ability. These collectively contribute to the faster reaction kinetics and improved selectivity and consequently, guarantee the superb CO2 RR performance. This study provides an appealing strategy for the rational design of electrocatalysts to enhance catalytic performance by improving the charge transfer ability through constructing a functional heterostructure, which enables interface engineering toward more efficient CO2 RR.

14.
Hear Res ; 412: 108357, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34739889

RESUMO

Previous psychophysical studies have identified a hierarchy of time-averaged statistics which determine the identity of natural sound textures. However, it is unclear whether the neurons in the inferior colliculus (IC) are sensitive to each of these statistical features in the natural sound textures. We used 13 representative sound textures spanning the space of 3 statistics extracted from over 200 natural textures. The synthetic textures were generated by incorporating the statistical features in a step-by-step manner, in which a particular statistical feature was changed while the other statistical features remain unchanged. The extracellular activity in response to the synthetic texture stimuli was recorded in the IC of anesthetized rats. Analysis of the transient and sustained multiunit activity after each transition of statistical feature showed that the IC units were sensitive to the changes of all types of statistics, although to a varying extent. For example, we found that more neurons were sensitive to the changes in variance than that in the modulation correlations. Our results suggest that the sensitivity of the statistical features in the subcortical levels contributes to the identification and discrimination of natural sound textures.

15.
Oncogene ; 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782718

RESUMO

Bladder cancer (BLCA) is the most common malignant tumor of the urinary system and is characterized by high metastatic rates and poor prognosis. The expression of tight junction protein 1 (TJP1) is associated with bladder cancer invasion; however, the mechanism by which TJP1 affects vasculature remodeling remains unknown. In this study, we found that TJP1 expression correlated with tumor angiogenesis and poor overall survival in clinical samples. Furthermore, TJP1 overexpression promoted tumor angiogenesis in BLCA cells and stimulated recruitment of macrophages to tumors by upregulating CCL2 expression. Mechanistically, TJP1 interacted with TWIST1 and enhanced the transcriptional activity of CCL2. The impairment of tumor angiogenesis caused by knockdown of TJP1 was dramatically rescued by overexpression of TWIST1. Furthermore, TJP1 recruited USP2, which deubiquitinated TWIST1, thereby protecting TWIST1 from proteasome-mediated protein degradation. In conclusion, our results suggest that TJP1 controls angiogenesis in BLCA via TWIST1-dependent regulation of CCL2. We demonstrate that TJP1 functions as a scaffold for the interaction between USP2 and TWIST1 and this may provide potential therapeutic targets in bladder cancer.

16.
Org Lett ; 23(22): 8942-8946, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757741

RESUMO

Herein, we report a photoinduced dehydrogenation/(3+2) cycloaddition reaction by merging organic photoredox and Lewis acid catalysis, providing a straightforward and efficient approach for directly installing a benzofuran skeleton on the saturated aza-heterocycles. In this protocol, we also describe a novel organic photocatalyst (t-Bu-DCQ) with the advantages of a wider redox potential, easy synthesis, and a low price. Furthermore, the stepwise activation mechanism of dual C(sp3)-H bonds was demonstrated by a series of experimental and computational studies.

17.
Cell Commun Signal ; 19(1): 112, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781973

RESUMO

BACKGROUND: Alzheimer's disease (AD) and glioblastoma are the most common and devastating diseases in the neurology and neurosurgery departments, respectively. Our previous research reports that the AD-related protein Presenilin1 represses cell proliferation by inhibiting the Wnt/ß-catenin pathway in glioblastoma. However, the function of Presenilin1 and the underlying mechanism need to be further investigated. METHODS: The correlations of two genes were conducted on the R2 microarray platform and CGGA. Wound healing, Transwell assays and glioblastoma transplantation were performed to detect invasion ability. Phalloidin staining was employed to show cell morphology. Proximity ligation assays and protein docking assays were employed to detect two protein locations. We also employed western blotting to detect protein expression. RESULTS: We found that Presenilin1 clearly repressed the migration, invasion and mesenchymal transition of glioblastoma cells. Intriguingly, we observed that the expression of Presenilin1 was positively correlated with Sortilin, which is identified as a pro-invasion molecule in glioma. Furthermore, Presenilin1 interacted with Sortilin at the transmembrane domain and repressed Sortilin expression by cleaving it in glioblastoma cells. First, we found that Sortilin introduced the function of Presenilin1 in phosphorylating ß-catenin and repressing invasion in glioblastoma cells. Last, Presenilin1 stimulation sharply suppressed the invasion and mesenchymal transition of glioblastoma in mouse subcutaneous and intracranial transplantation models. CONCLUSIONS: Our study reveals that Sortilin mediates the regulation of ß-catenin by Presenilin1 and transduces the anti-invasive function of Presenilin1, which may provide novel therapeutic targets for glioblastoma treatment. Video Abstract.

18.
Ann Transl Med ; 9(20): 1526, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790732

RESUMO

Background: Ultrasound (US) is widely used in the clinical diagnosis of thyroid nodules. Artificial intelligence-powered US is becoming an important issue in the research community. This study aimed to develop an improved deep learning model-based algorithm to classify benign and malignant thyroid nodules (TNs) using thyroid US images. Methods: In total, 592 patients with 600 TNs were included in the internal training, validation, and testing data set; 187 patients with 200 TNs were recruited for the external test data set. We developed a Visual Geometry Group (VGG)-16T model, based on the VGG-16 architecture, but with additional batch normalization (BN) and dropout layers in addition to the fully connected layers. We conducted a 10-fold cross-validation to analyze the performance of the VGG-16T model using a data set of gray-scale US images from 5 different brands of US machines. Results: For the internal data set, the VGG-16T model had 87.43% sensitivity, 85.43% specificity, and 86.43% accuracy. For the external data set, the VGG-16T model achieved an area under the curve (AUC) of 0.829 [95% confidence interval (CI): 0.770-0.879], a radiologist with 15 years' working experience achieved an AUC of 0.705 (95% CI: 0.659-0.801), a radiologist with 10 years' experience achieved an AUC of 0.725 (95% CI: 0.653-0.797), and a radiologist with 5 years' experience achieved an AUC of 0.660 (95% CI: 0.584-0.736). Conclusions: The VGG-16T model had high specificity, sensitivity, and accuracy in differentiating between malignant and benign TNs. Its diagnostic performance was superior to that of experienced radiologists. Thus, the proposed improved deep-learning model can assist radiologists to diagnose thyroid cancer.

19.
J Org Chem ; 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34794309

RESUMO

A visible-light-driven multistep tandem reaction between vinyl azides and alkyl bromides has been developed leading to the formation of tetralone skeletons under mild conditions, which can be easily scaled up to the gram scale. Various 1-tetralone derivatives are synthesized and transformed into desired products in good to high yields.

20.
BMC Neurol ; 21(1): 440, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753435

RESUMO

BACKGROUND: Patients with acute non-lacunar single subcortical infarct (SSI) associated with mild intracranial atherosclerosis (ICAS) have a relatively high incidence of early neurological deterioration (END), resulting in unfavorable functional outcomes. Whether the early administration of argatroban and aspirin or clopidogrel within 6-12 h after symptom onset is effective and safe in these patients is unknown. METHODS: A review of the stroke database of Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University and Qingdao Center Hospital, Qingdao University Medical College in China was undertaken from May 2017 to January 2020 to identify all patients with non-lacunar SSI caused by ICAS within 6-12 h of symptom onset based on MRI screening. Patients were divided into two groups, one comprising those who received argatroban and mono antiplatelet therapy with aspirin or clopidogrel on admission (argatroban group), and the other those who received dual antiplatelet therapy (DAPT) with aspirin and clopidogrel during hospitalization (DAPT group). The primary outcome was recovery by 90 days after stroke based on a modified Rankin scale (mRS) score (0 to 1). The secondary outcome was END incidence within 120 h of admission. Safety outcomes were intracranial hemorrhage (ICH) and major extracranial bleeding. The probability of clinical benefit (mRS score 0-1 at 90 days) was estimated using multivariable logistic regression analysis. RESULTS: A total of 304 acute non-lacunar SSI associated with mild ICAS patients were analyzed. At 90 days, 101 (74.2%) patients in the argatroban group and 80 (47.6%) in the DAPT group had an mRS score that improved from 0 to 1 (P < 0.001). The relative risk (95% credible interval) for an mRS score improving from 0 to 1 in the argatroban group was 1.50 (1.05-2.70). END occurred in 10 (7.3%) patients in the argatroban group compared with 37 (22.0%) in the DAPT group (P < 0.001). No patients experienced symptomatic hemorrhagic transformation. CONCLUSIONS: Early combined administration of argatroban and an antiplatelet agent (aspirin or clopidogrel) may be beneficial for patients with non-lacunar SSI associated with mild ICAS identified by MRI screening and may attenuate progressive neurological deficits. TRIAL REGISTRATION: Our study is a retrospectively registered trial.


Assuntos
Arteriosclerose Intracraniana , Inibidores da Agregação Plaquetária , Acidente Vascular Cerebral Lacunar , Arginina/análogos & derivados , Quimioterapia Combinada , Humanos , Arteriosclerose Intracraniana/diagnóstico por imagem , Arteriosclerose Intracraniana/tratamento farmacológico , Ácidos Pipecólicos/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Acidente Vascular Cerebral Lacunar/diagnóstico por imagem , Acidente Vascular Cerebral Lacunar/tratamento farmacológico , Sulfonamidas/uso terapêutico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...