Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33445866

RESUMO

Tungsten oxide (WO3) electrochromic devices have attracted a lot of interest in the energy conservation field and have shown a preliminary application potential in the market. However, it is difficult to quantitatively direct experiments with the existing electrochromic theoretical models, which can restrict the further development of electrochromism. Here, an electrochromic physical simulation model of WO3 films was built to solve the above problem. Experimentally, the actual electrochromic kinetics of WO3 in the LiClO4/propylene carbonate electrolyte was determined as a continuous electron-transfer process by cyclic voltammetry measurement and X-ray photoelectron spectroscopy analysis. Theoretically, the continuous electron-transfer process, Li+-ion diffusion process, and the transmittance change process were described by a modified Butler-Volmer equation, Fick's law, and charge versus coloration efficiency/bleaching efficiency coupling equation, respectively. The comparisons between theoretical and experimental data were conducted to verify this model. The shape of the simulated current curves was basically consistent with that of experiments. Besides, the difference of transmittance between the simulation and experiments was less than 8%. The difference between theory and experiment was attributed to the influence of the electric double layer and the actual reaction interface. The success of the simulation was attributed to the accurate description of the electrochromic process by continuous electron-transfer kinetics. This model can be applied in the research of electrochromic mechanisms, experimental result prediction, and novel device development due to its clear physical nature.

2.
Dalton Trans ; 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915180

RESUMO

The development of sustainable routes for the synthesis of metal organic frameworks (MOFs) is very important because of the wide applications of MOFs on a large scale in the fields of adsorption, separation, and catalysis. ZIF-8, a zinc-based zeolitic imidazolate framework (ZIF), was first prepared following a solvent-free method from zinc acetate and denoted as ZIF-8-DGUT. The synthesis was conducted with the addition of an appropriate amount of sodium hydroxide (NaOH) powder before fully grinding, and the synthesis was accomplished at mild temperature at 343 K for 24 h. This strategy provided a practical method for the production of ZIF materials.

3.
Nanoscale ; 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32618977

RESUMO

A unique technique to passivate both bottom and top sides of perovskite has been successfully developed to achieve highly efficient inverted perovskite light-emitting diodes (PeLEDs). For the bottom passivation, an organic/inorganic hybrid electron transporting layer (ETL) replaces the widely adopted inorganic ETL to overcome the disadvantages of the pure inorganic ETL. The ZPM (ZnO-in-polymer matrix) ETL, which consists of ZnO nanoparticles blended into polyvinylpyrrolidone, not only passivates the surface defects of ZnO nanoparticles, but also improves the morphology and stability of FAPbBr3 film. For the top passivation, smaller grains and a FAPbBr3/PEA2PbBr4 3D/2D hybrid structure are obtained by applying a small amount of PEABr solution. The synergetic interplay of organic/inorganic hybrid ETL and organic halide salt surface modification substantially shrinks the grain size to facilitate radiative recombination, and suppresses non-radiative recombination both at the interface of ETL/perovskite and HTL/perovskite, and in the perovskite layer. As a result, the highly efficient green PeLED sets a new record of device performance for FAPbBr3-based inverted PeLEDs, with current efficiency of 39.7 cd A-1, external quantum efficiency of 9.0%, power efficiency of 46.4 lm W-1, maximum luminance of 6.03 × 104 cd m-2, and half-lifetime of 297 minutes at an initial brightness of ∼100 cd m-2.

4.
Langmuir ; 36(30): 8655-8667, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633966

RESUMO

Drop-on-demand printing is a noncontact direct patterning and rapid manufacturing printing technology which shows considerable potential in future display manufacturing. Metal oxides are an important kind of functional material in thin-film transistors, which are the core component of active matrix display technology, and thus printing a high-quality metal oxide functional layer is of great importance. In this feature article, we focused on the current progress in one of the foundations of drop-on-demand printing technology-the ink system. We explained the basic principles of a metal oxide ink system for printed electronics and summarized the applications of several kinds of ink systems in thin film transistor printing. Meanwhile, we also summed up problems that printed thin film transistors are facing as well as the corresponding solutions from the aspect of ink systems.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32272832

RESUMO

In electrochemistry, the carbazole is generally coupled to dimer but not to polymer. This work has reported that organic electropolymerization (OEP) of 4,4',4″-tri(N-carbazolyl)triphenylamine (TCTA) would form a high cross-linked carbazole polymer by its high activity/reversibility and a synchronous viscosity control. It has significantly improved the OEP film quality of both hole-transporting and electroluminescent layers in organic light-emitting diodes. As a result, the conductivity and power efficiency of the organic light-emitting diodes with TCTA are eight and four times of that without TCTA. A prototype display device with a 1.7 in. monochrome passive matrix of 58 ppi under the driving chip is successfully fabricated with accurate pixel size and uniform electroluminescence, which shows a great potential of OEP in the electroluminescent application.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32266807

RESUMO

For light-emitting polymers with a deep highest occupied molecular orbital energy level used for polymer light-emitting diodes (PLEDs), the hole injection barrier and hole transport of the anode buffer layer are of vital importance for optimizing electroluminescent performance. In this study, high-work-function hole injection layers with nanotextures were achieved by modifying poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with a perfluorinated ionomer (PFI) and n-butyl alcohol and were used to achieve a single-layer device without a hole transport layer. With such an interlayer, the PLEDs based on PPF-SO25 exhibit remarkable current efficiency over 13.0 cd A-1, which significantly outperform the devices with regular PEDOT:PSS. To our knowledge, this performance is among the best reported for single-layer blue PLEDs. The bias-dependent capacitance curves of these PLEDs suggest a nonuniform surface distribution of PFI. Our findings show that the PFI-modified PEDOT:PSS not only operates as a high-work-function hole injection layer to facilitate hole injection but also as a potential inner scattering medium for light extraction.

7.
Nanomaterials (Basel) ; 9(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653004

RESUMO

Inkjet printing has been proved to be a powerful tool in the cost-effective ambient deposition of functional materials for the fabrication of electronic devices in the past decades. However, restricted by equipment and inks, the feature size of printed dots or lines with conventional inkjet printing is usually limited to several tens of micrometers, which could not fit the requirements for the fabrication of large-area, high-resolution microscale, even nanoscale, structures. Therefore, various technical means were developed for breaking the equipment limits. Here, we report a strategy for realizing ultrashort channels and homogeneous microstructures arrays by a conventional piezoelectric inkjet printing technique without any additional pre-mask process on the substrate. This strategy extends application of piezoelectric inkjet printing technique to biological and technological areas.

8.
ACS Appl Mater Interfaces ; 11(31): 28052-28059, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31304744

RESUMO

Inkjet-printed thin-film transistors (TFTs) for active-matrix light-emitting diode display are drawing much attention for the advantages of low material waste and simple fabrication processes without vacuum deposition and photolithography steps. Herein, for the first time, solution-processed quantum-dot light-emitting diode (QLED) array displays driven with the inkjet-printed oxide TFT backplane were realized and demonstrated using a general "solvent printing" method. To suppress nanopore formation in the thick oxide films, carbon-free aqueous inks were employed for gate dielectrics. No nanopore was found in the whole 120 nm-thick gate dielectrics. However, compared to the organic inks, the aqueous inks have very low viscosity, resulting in uncontrollable ink spreading especially in transline printing. The ink easily shrinks on the low-surface-energy area and spreads on the high-surface-energy area, leading to serious uniformity problems (the upper lines even break at the top of underlying lines). To solve the problem, a "solvent printing" method was employed to form coffee-line surface-energy patterns, which were uniform without shape distortion. The surface-energy patterns can restrain the ink spreading and tune the morphology of the printed films. As a result, multilayer TFT arrays with ideal shapes were achieved. The mobilities of the printed top-gate TFTs in the backplane array were 3.13 ± 0.87 cm2 V-1 s-1 for switching TFTs and 2.22 ± 0.38 cm2 V-1 s-1 for driving TFTs. Finally, an active-matrix red QLED character display based on the printed oxide TFT backplane and solution-processed QLEDs was demonstrated. The "solvent printing" method opens a general route for inkjet-printed multilayer electronic devices.

9.
J Phys Chem Lett ; 10(12): 3415-3419, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31181931

RESUMO

A polymer-doped ink system was applied to a printed InO x thin film transistor (TFT), and enhancement mode devices were obtained with an appropriate polymer doping amount. As the polymer doping concentration (PDC) increases, the threshold voltage of thin film transistor shifts positively, while the mobility and subthreshold slope show only an insignificant degradation. The microanalysis shows that the polymer doping can generate traps and defects in the oxide lattice, thus shifting the threshold voltage positively and degrading the mobility and subthreshold slope. Meanwhile, the doping can also facilitate the formation of an oxide lattice in the local region, which counterbalances the effect of doping on the mobility and subthreshold slope. The InO x, the TFT shows good electrical performance at an optimal PDC of 0.3 wt %, with a mobility of 4.2 cm2 V-1 s-1, a threshold voltage of 0.7 V, an on/off ratio of 106, and a subthreshold slope of 0.30 V/dec.

10.
Nanoscale Res Lett ; 14(1): 80, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30838466

RESUMO

In this work, a low leakage current ZrO2 was fabricated for sputter indium gallium zinc oxide (IGZO) thin-film transistor using direct inkjet-printing technology. Spin-coated and direct inkjet-printed ZrO2 were prepared to investigate the film formation process and electrical performance for different process. Homogeneous ZrO2 films were observed through the high-resolution TEM images. The chemical structure of ZrO2 films were investigated by XPS measurements. The inkjet-printed ZrO2 layer upon IGZO showed a superior performance on mobility and off state current, but a large Vth shift under positive bias stress. As a result, the TFT device based on inkjet-printed ZrO2 exhibited a saturation mobility of 12.4 cm2/Vs, an Ion/Ioff ratio of 106, a turn on voltage of 0 V and a 1.4-V Vth shift after 1-h PBS strain. Higher density films with less oxygen vacancy were responsible for low off state current for the printed ZrO2 device. The mechanism of deteriorated performance on PBS test can be ascribed to the In-rich region formed at the back channel which easily absorbs H2O and oxygen. The absorbed H2O and oxygen capture electrons under positive bias stress, serving as acceptors in TFT device. This work demonstrates the film formation process of direct inkjet-printed and spin-coated oxide films and reveals the potential of direct inkjet-printed oxide dielectric in high-performance oxide TFT device.

11.
ACS Appl Mater Interfaces ; 11(5): 5232-5239, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30640426

RESUMO

Praseodymium-doped indium zinc oxide (PrIZO) has been employed as the channel layer of thin-film transistors (TFTs). The TFTs with Pr doping exhibited a remarkable suppression of the light-induced instability. A negligible photo-response and remarkable enhancement in negative gate bias stress under illumination (NBIS) were achieved in the PrIZO-TFTs. Meanwhile, the PrIZO-TFTs showed reasonable characteristics with a high-field-effect mobility of 26.3 cm2/V s, SS value of 0.28 V/decade, and Ion/ Ioff ratio of 108. X-ray photoelectron spectroscopy, microwave photoconductivity decay, and photoluminescence spectra were employed to analyze the effects of the Pr concentrations on the performance of PrIZO-TFTs. We disclosed that acceptor-like trap states induced by Pr ions might lead to the suppression of photo-induced carrier in conduction band, which is a new strategy for improving illumination stability of amorphous oxide semiconductors. Finally, a prototype of fully transparent AMOLED display was successfully fabricated to demonstrate the potential of Pr-doping TFTs applied in transparent devices.

12.
ACS Appl Mater Interfaces ; 11(5): 5193-5199, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30624890

RESUMO

We have successfully developed an ink system containing inexpensive raw materials through a simple process and have printed ZrO x dielectric film at a relatively low annealing temperature of 250 °C. The ZrO x dielectric film afforded a leakage current density of 5.4 × 10-6 A/cm2 at 1 MV/cm and a dielectric constant of 10 and shows a promising future for flexible electronics. The ink system shows a temperature-induced gelation behavior, and a gel network is formed when the temperature rises. A high concentration of oxide precursors is obtained near the network area through the absorption function of polymer groups, and thus oxide structure can be formed at a relatively low temperature due to the shorter diffusion path of precursor polymerization. The microstructure of the printed ZrO x film was investigated by high resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS), and the effect of annealing temperature on film structure was studied.

13.
Materials (Basel) ; 11(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30563271

RESUMO

Aluminum-doped ZnO (AZO) has huge prospects in the field of conductive electrodes, due to its low price, high transparency, and pro-environment. However, enhancing the conductivity of AZO and realizing ohmic contact between the semiconductor and AZO source/drain (S/D) electrodes without thermal annealing remains a challenge. Here, an approach called pulsed laser deposition (PLD) is reported to improve the comprehensive quality of AZO films due to the high energy of the laser and non-existence of the ion damage. The 80-nm-thick AZO S/D electrodes show remarkable optical properties (transparency: 90.43%, optical band gap: 3.42 eV), good electrical properties (resistivity: 16 × 10-4 Ω·cm, hall mobility: 3.47 cm²/V·s, carrier concentration: 9.77 × 1020 cm-3), and superior surface roughness (Rq = 1.15 nm with scanning area of 5 × 5 µm²). More significantly, their corresponding thin film transistor (TFT) with low contact resistance (RSD = 0.3 MΩ) exhibits excellent performance with a saturation mobility (µsat) of 8.59 cm²/V·s, an Ion/Ioff ratio of 4.13 × 106, a subthreshold swing (SS) of 0.435 V/decade, as well as good stability under PBS/NBS. Furthermore, the average transparency of the unpatterned multi-films composing this transparent TFT can reach 78.5%. The fabrication of this TFT can be suitably transferred to transparent arrays or flexible substrates, which is in line with the trend of display development.

14.
Nanoscale Res Lett ; 13(1): 354, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30402729

RESUMO

We first verify the critical impact of evaporation on the formation of zigzag hollow cracks by regulating the drying micro-environment of silver nanoparticle film. Uneven evaporation and component segregation contributes to the flows along the surface and inside of droplets. Asymmetric vapor concentration distribution is capable of weakening the surface flow of droplets, thus suppressing the inner compressive stress of nanoparticles and leading to a surface morphology with less cracks. Although defect-free and surface smooth nanoparticle film deposited by a solution-based method remains a big challenge, our work has referential significance to optimize high-quality nanoparticle film with appropriate deposition and curing processes. Moreover, an optimization possibility through the drying micro-environment should be considered in high-end applications due to its enhanced effect on high-resolution patterns.

15.
Micromachines (Basel) ; 9(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30424310

RESUMO

Tungsten trioxide (WO3) is a wide band gap semiconductor material that is used as an important electrochromic layer in electrochromic devices. In this work, the effects of the annealing temperature on the optical band gap of sol-gel WO3 films were investigated. X-ray Diffraction (XRD) showed that WO3 films were amorphous after being annealed at 100 °C, 200 °C and 300 °C, respectively, but became crystallized at 400 °C and 500 °C. An atomic force microscope (AFM) showed that the crystalline WO3 films were rougher than the amorphous WO3 films (annealed at 200 °C and 300 °C). An ultraviolet spectrophotometer showed that the optical band gap of the WO3 films decreased from 3.62 eV to 3.30 eV with the increase in the annealing temperature. When the Li⁺ was injected into WO3 film in the electrochromic reaction, the optical band gap of the WO3 films decreased. The correlation between the optical band gap and the electrical properties of the WO3 films was found in the electrochromic test by analyzing the change in the response time and the current density. The decrease in the optical band gap demonstrates that the conductivity increases with the corresponding increase in the annealing temperature.

16.
Soft Matter ; 14(46): 9402-9410, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30421779

RESUMO

Ultrashort channels of electrodes are essential for the construction of advanced functional devices with high-level integration and high operation speed. However, the channel length of fabricated electrodes is limited to 20 µm in inkjet printing. Although several methods have been previously proposed to obtain short channels, they require extra processing steps. In this paper, channel self-aligning phenomenon was observed in directly patterned electrodes on unmodified substrate by inkjet printing, when using an interspace defects growing method. Further exploring the underlying mechanism reveals that the capillary force induced air film prevents droplets coalescence, even on a substrate with no temperature differences. The wetting region, which is generated by the receding droplets impingement, will draw droplets closer together at a larger drop space, thus demanding smaller air pressure for coalescence inhibition and contributing to the self-aligning phenomenon of micro-sized droplets released by inkjet printing. Accordingly, an ultrashort channel of 2.38 µm is obtained with relatively smooth boundaries, when electrodes are printed on a slightly heated substrate, which reduces the air pressure between two neighboring droplets. This work will provide a significant reference for future high resolution applications of inkjet printing technology.

17.
Materials (Basel) ; 11(10)2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30275382

RESUMO

In this work, a high-performance thin film transistor with an neodymium-doped indium zinc oxide (Nd:IZO) semiconductor via a room temperature approach and adopting the Nd:IZO/Al2O3 nanolaminate structure was investigated. The effects of the ultrathin Al2O3 layer and the thickness of Nd:IZO layer in the nanolaminate structure on the improvement of electrical performance and stability of thin film transistors (TFTs) were systematically studied. Besides the carrier movement confined along the near-channel region, driven by the Al2O3 layer under an electrical field, the high performance of the TFT is also attributed to the high quality of the 8-nm-thick Nd:IZO layer and the corresponding optimal Nd:IZO/Al2O3 interface, which reduce the scattering effect and charge trapping with strong M⁻O bonds in bulk and the back-channel surface of Nd:IZO, according to the X-ray reflectivity (XRR), X-ray photoelectron spectroscopy (XPS), and micro-wave photo conductivity decay (µ-PCD) results. As a result, the Nd:IZO/Al2O3 TFT exhibits an outstanding performance, with a high µsat of 32.7 cm²·V-1·s-1, an Ion/Ioff of 1.9 × 108, and a low subthreshold swing (SS) value of 0.33 V·dec-1, which shows great potential for the room temperature fabrication of TFTs in high-resolution or high-frame-rate displays by a scalable, simple, and feasible approach.

18.
Adv Mater ; 30(39): e1804137, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30101569

RESUMO

All-solution-processed pure formamidinium-based perovskite light-emitting diodes (PeLEDs) with record performance are successfully realized. It is found that the FAPbBr3 device is hole dominant. To achieve charge carrier balance, on the anode side, PEDOT:PSS 8000 is employed as the hole injection layer, replacing PEDOT:PSS 4083 to suppress the hole current. On the cathode side, the solution-processed ZnO nanoparticle (NP) is used as the electron injection layer in regular PeLEDs to improve the electron current. With the smallest ZnO NPs (2.9 nm) as electron injection layer (EIL), the solution-processed PeLED exhibits a highest forward viewing power efficiency of 22.3 lm W-1 , a peak current efficiency of 21.3 cd A-1 , and an external quantum efficiency of 4.66%. The maximum brightness reaches a record 1.09 × 105 cd m-2 . A record lifetime T50 of 436 s is achieved at the initial brightness of 10 000 cd m-2 . Not only do PEDOT:PSS 8000 HIL and ZnO NPs EIL modulate the injected charge carriers to reach charge balance, but also they prevent the exciton quenching at the interface between the charge injection layer and the light emission layer. The subbandgap turn-on voltage is attributed to Auger-assisted energy up-conversion process.

19.
Materials (Basel) ; 11(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111704

RESUMO

In this research, a passivated methodology was proposed for achieving good electrical characteristics for back-channel-etch (BCE) typed amorphous Si-Sn-O thin film transistors (a-STO TFTs). This methodology implied that the thermal annealing (i.e., pre-annealing) should be carried out before deposition of a SiOx passivation layer. The pre-annealing played an important role in affecting device performance, which did get rid of the contamination of the lithography process. Simultaneously, the acceptor-like sub-gap density of states (DOS) of devices was extracted for further understanding the reason for improving device performance. It found that the SiOx layer could reduce DOS of the device and successfully protect the device from surroundings. Finally, a-STO TFT applied with this passivated methodology could possess good electrical properties including a saturation mobility of 4.2 ± 0.2 cm²/V s, a low threshold voltage of 0.00 V, a large on/off current ratio of 6.94 × 108, and a steep subthreshold swing of 0.23 V/decade. The threshold voltage slightly shifted under bias stresses and recovered itself to its initial state without any annealing procedure, which was attributed to the charge trapping in the bulk dielectric layers or interface. The results of this study indicate that a-STO TFT could be a robust candidate for realizing a large-size and high-resolution display.

20.
ACS Appl Mater Interfaces ; 10(34): 28764-28771, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30074382

RESUMO

Praseodymium-doped indium zinc oxide (PrIZO) channel materials have been fabricated by a solution process with conventional chemical precursor. The PrIZO-based thin-film transistors (TFTs) exhibited a field-effect mobility of 10.10 cm2/V s, a subthreshold swing value of 0.25 V/decade, and an Ion/ Ioff ratio of 108. The as-fabricated PrIZO-TFTs showed an improved device performance against positive bias temperature stress (PBTS shift of 1.97 V for 7200 s), which was evidently better than the undoped IZO-TFTs (PBTS shift of 9.52 V). This result indicates that the organic residual (-OCH3 and -CH2-) in metal-oxide semiconductor, which is confirmed to be a dominant effect on the performance of PBTS, can be passivated by the rare earth of praseodymium element. The residual is intended to be oxidized with a more stable ester group with the assistant of PrOx, weakening the electron-withdrawing characteristic during the thermal bias stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA