Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(2): 1100-1108, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845949

RESUMO

The hybrid perovskite CH3NH3PbX3 (X = Cl, Br, I) is a promising material for developing novel optoelectronic devices. Due to its intrinsic non-layered crystal structure, it remains challenging to synthesize two-dimensional (2D) single-crystalline CH3NH3PbX3 with nanoscale thickness. Here, we report a bottom-up approach to fabricate large CH3NH3PbX3 2D crystals via liquid-phase growth on a mica substrate. The strong potassium-halogen interactions at the perovskite/mica interface decrease the interface energy, driving the striking in-plane growth of the perovskite. The grown 2D CH3NH3PbBr3 crystal was characterized as 8 nm in thickness and hundreds of micrometers in lateral size. Weak exciton binding energy was crucial for improving the photoelectric performance of 2D CH3NH3PbBr3. A visible-light photodetector with a metal/insulator/perovskite configuration was finally achieved with a photoresponsivity of 126 A W-1 and a bandwidth exceeding 80 kHz. Our work proves that the liquid-phase growth on mica is a controllable method to grow 2D hybrid CH3NH3PbX3 perovskites, which can facilitate both device applications and fundamental investigations.

2.
Opt Express ; 27(26): 38451-38462, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878612

RESUMO

We investigate circularly polarized photoluminescence (PL) in the MoS2/MoO3 heterostructure, which was fabricated by transferring MoS2 monolayer to cover the MoO3 few layers on the SiO2/Si substrate. It is shown that the PL with the same helicity as the excitation light is dominant due to the inherent chiral optical selectivity, which allows exciting one of the valleys in MoS2 monolayer. The degree of polarization (DP), which characterizes the intensity difference of two chiral components of PL, is unequal for the right-handed and left-handed circularly polarized excitations in the MoS2/MoO3 heterostructure. This effect is different from the one in pristine MoS2. Our Raman spectra results together with ab initio calculations indicate the p-doped features of the MoS2 when it covers the MoO3 layers. Thus the possible explanation of the unequal DP is that the p-doping process generates a built-in voltage and therefore brings the difference of electron-hole overlaps between K and K' valleys. Namely the asymmetric valley polarization may be obtained in the MoS2/MoO3 heterostructure. Consequently, the circularly polarized PL caused by the electron-hole recombination at K and K' valleys manifests unequal DP for the right-handed and left-handed helix excitations. This asymmetric effect is further enhanced by decreasing the temperature in the MoS2/MoO3 heterostructure. Our investigation provides a unique platform for developing novel two-dimensional valleytronic devices.

3.
Adv Mater ; : e1904646, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31692147

RESUMO

Electromagnetic metastructures stand for the artificial structures with a characteristic size smaller than the wavelength, which may efficiently manipulate the states of light. However, their applications are often restricted by the bandwidth of the electromagnetic response of the metastructures. It is therefore essential to reassert the principles in constructing broadband electromagnetic metastructures. Herein, after summarizing the conventional approaches for achieving broadband electromagnetic functionality, some recent developments in realizing broadband electromagnetic response by dispersion compensation, nonresonant effects, and several trade-off approaches are reviewed, followed by some perspectives for the future development of broadband metamaterials. It is anticipated that broadband metastructures will have even more substantial applications in optoelectronics, energy harvesting, and information technology.

4.
Opt Lett ; 44(7): 1758-1761, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933140

RESUMO

Driven by the development of nanophotonics and integrated optics, manipulating polarization of light with metastructures has been extensively studied in recent decades. So far there is still a high demand for more efficient ways to control the polarization state of light with extraordinary performance. In this Letter, we report on constructing multifunctional wave plates with stereo-metastructure arrays (SMAs) by two-photon absorption polymerization. In one frequency range, the SMA can turn the polarization direction of incident linearly polarized (LP) light to its orthogonal direction, acting as a half-wave plate (HWP). In the other frequency range, it converts the LP incident light to circularly polarized (CP) light, acting as a quarter-wave plate (QWP). Such a multifunctional element is expected to possess an energy efficiency as high as 75%. By encoding SMAs with different rotation angles at different spatial areas, we show that SMAs can be applied in imaging and sensing, where the focal-plane-array (FPA) imaging demonstrates patterned contrast following different structural distribution.

5.
Opt Express ; 26(21): 27504-27514, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30469816

RESUMO

The hybrid organic-inorganic perovskites (HOIPs) have attracted much attention recently due to their preeminent efficiency in solar cells. According to the difference on the crystalline structure, the HOIPs could be classified into layered and non-layered perovskites. Very recently, it has been realized that the non-layered HOIPs with common-vertex structure possess even better opto-electrical performance. Yet the carrier recombination mechanism in perovskite remains not very clear, and a clear understanding of this mechanism is essential to pinpoint the working mechanism of photovoltaic and electroluminescent materials. Here we report the optical studies on the hybrid perovskite crystalline nano-sheet of CH3NH3PbBr3 with common-vertex structure. It is shown that the non-layered perovskite crystalline nanosheets possess the exciton binding energy about two orders of magnitude smaller than that of the layered perovskite and the colloidal nanoplates, which is beneficial for the designing of the high-efficiency photovoltaic devices. By measuring the temperature-dependent photoluminescence (PL) spectra, the excitation-power-variant PL spectra, and the time-resolved PL spectra, we identify that both the free-carrier and the localized exciton recombination channels may coexist in the crystallites. Further, for the thin crystallite (∼60 nm), the free-carrier recombination channel dominates; whereas when the thickness increases beyond 200 nm, the localized exciton recombination channel plays the major role. We suggest these results are helpful to improve further the photovoltaic and electroluminescent performances of perovskite devices.

6.
Opt Lett ; 43(17): 4128-4131, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160733

RESUMO

The efficiency of photoluminescence (PL) of transition-metal dichalcogenides (TMDCs) significantly influences their practical applications in optoelectronic devices. In this work, we study multiple coupling among excitons, surface plasmons, and optical modes, and their effects on PL of monolayer MoS2 atop plasmonic nanohole arrays. Under the illumination of visible light, strong intensity enhancement of PL from monolayer MoS2 is observed in the system. We further demonstrate that there exist excitons induced from MoS2, localized and propagating surface plasmons excited from nanoholes, and optical modes related to the incident laser. And hybrid coupling of those modes significantly improves the PL signals and also lightens the PL images of monolayer MoS2. This work provides a unique way to improve the emission of monolayer TMDCs. The atomically thin TMDCs coupled to plasmonic metamaterials are also promising for advanced applications such as ultrathin integrated light-emission diodes, photodetection, and nanolasers.

7.
Nano Lett ; 18(3): 1896-1902, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29432022

RESUMO

In this work, we experimentally demonstrate for the first time strong localization of surface plasmon polaritons (SPPs) at visible regime in metallic nanogratings with short-range correlated disorder. By increasing the degree of disorder, the confinement of SPPs is significantly enhanced, and the effective SPP propagation length dramatically shrinks. Strong localization of SPPs eventually emerges at visible regime, which is verified by the exponentially decayed fields and the vanishing autocorrelation function of the SPPs. Physically, the short-range correlated disorder induces strong interference among multiple scattered SPPs and provides an adequate fluctuation to effective permittivity, which leads to the localization effect. Our study demonstrates a unique opportunity for disorder engineering to manipulate light on nanoscale and may achieve various applications in random nanolasing, solar energy, and strong light-matter interactions.

8.
Opt Lett ; 43(1): 158-161, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328221

RESUMO

Surface plasmons (SPs), the resonance of free electrons on the metal-air interface, may strongly interact with light and generate some extraordinary optical effects. Instead of using conventional planar light excitation, here we excite SPs with a focused electron beam on metallic nanostructures with different geometrical symmetries. With the help of a polarizer and filter in the detection system, we obtain cathodoluminescence (CL) images with different polarizations at certain wavelengths. The maxima in the CL images show that the focused electron beam may efficiently excite luminescence with different polarizations at different spots. Comparing the data collected on the structures with specific geometrical symmetry, we demonstrate that the polarization of the emitted light depends on both the structural symmetry and the excitation location. We suggest that this Letter is enlightening to understand the relationship between the SP resonance on the structure and the emission of CL with different polarizations.

9.
Opt Express ; 26(1): 516-524, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328328

RESUMO

In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. We anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

10.
Opt Express ; 25(11): 12081-12089, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786566

RESUMO

We present theoretically the transport of plasmonic waves in doped graphene tube, which is made by rolling planar graphene sheet into a cylinder and periodic doping is applied on it. It is shown that periodic modulation of the Fermi level along the tube can open gaps in the dispersion relations of graphene plasmons and eventually create plasmonic band structures. The propagation of graphene plasmons is forbidden within the bandgaps; while within the band, the plasmonic waves present axially-extended field distributions and propagate along the tubes, yet well confined around the curved graphene surface. Furthermore, the bandgaps, propagation constants and propagation lengths of the modes in plasmonic band structures are significantly tuned by varying the Fermi level of graphene, which provides active controls over the plasmonic waves. Our proposed structures here may provide an approach to dynamically control the plasmonic waves in graphene-based subwavelength waveguides.

11.
Opt Lett ; 42(14): 2834-2837, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28708181

RESUMO

In this work, we demonstrate polarization-dependent strong coupling between surface plasmon polaritons (SPPs) and excitons in the J-aggregates-attached aperture array. It is shown that the excitons strongly couple with the polarization-dependent SPPs, and Rabi splittings are consequently observed. As a result, the polarization-dependent polariton bands are generated in the system. Increasing the incident angle, the polaritons disperse to higher energies under transverse-electric illumination, while the polaritons disperse to lower energies under transverse-magnetic illumination. Therefore, at different polarization incidence, we experimentally achieve distinct polaritons with opposite dispersion directions. In this way, tuning the polarization of the incident light, we can excite different polaritons whose energy propagates to different directions. Furthermore, by retrieving the mixing fractions of the components in these polariton bands, we find that the dispersion properties of the polaritons are inherited from both the SPPs and the excitons. Our investigation may inspire related studies on tunable photon-exciton interactions and achieve some potential applications on active polariton devices.

12.
Opt Express ; 25(9): 10261-10269, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468399

RESUMO

Monolayer MoS2 is an emerging two-dimensional semiconductor that has seen wide applications in optoelectronic and light-emitting devices. Here we report on the antenna-enhanced spontaneous emission of monolayer MoS2, which has weak absorbance and low intrinsic quantum yield. The ultrathin silver platelet antennas we use can both increase the absorption cross-section and improve the transmission efficiency via controlling the optical field at nanometer scale. Experimental results indicate the photoluminescence enhancement can reach 4 times, which is also supported by numerical analysis of both excitation and emission processes with respect to the thickness of spacer layer. This ultrathin structure can facilitate the development of on-chip emitters and valley-based devices, especially in cases of large area sample or flexible substrate.

13.
Opt Express ; 25(5): 5772-5780, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380834

RESUMO

In this work, we present in-plane propagation of surface plasmon polaritons (SPPs) guided by a single dielectric (Al2O3) subwavelength lens. By mounting a designed Al2O3 nanoparticle on the silver film, the effective index of a silver-Al2O3 interface is influenced by the particle thickness, then the phase difference between the silver-air and silver-Al2O3 interface can be utilized to modulate the in-plane propagation of SPPs. We show that an elliptical Al2O3 lens transforms the diffusive SPPs into a collimated beam, whose direction of propagation and beam width can be easily controlled. We also present that a triangular Al2O3 lens significantly reforms the SPPs to a Bessel beam, which possesses non-diffractive and self-healing properties. Our investigation provides unique way to guide the in-plane transport of SPPs by using dielectric subwavelength elements, which may achieve potential applications in plasmonic integrated circuits.

14.
Opt Lett ; 42(9): 1744-1747, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454150

RESUMO

Manipulating the propagation of surface plasmons (SPs) on a nanoscale is a fundamental issue of nanophotonics. By using focused electron beam, SPs can be excited with high spatial accuracy. Here we report on the propagation of SPs on a chain of gold nanodisks with cathodoluminescence (CL) spectroscopy. Experimental evidence for the propagation of SPs excited by the focused electron beam is demonstrated. The wavelength of the transmitted SPs depends on the geometrical parameters of the nanodisk chain. Furthermore, we design and fabricate a beam splitter, which selectively transmits SPs of certain wavelengths to a specific direction. By scanning the sample surface point by point and collecting the CL spectra, we obtain the spectral mapping and identify that the chain of the smaller nanodisks can efficiently transport SPs at shorter wavelengths. This Letter provides a unique approach to manipulate in-plane propagation of SPs.

15.
Opt Lett ; 42(6): 1153-1156, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295071

RESUMO

In this Letter, we report on encoding and display based on stereo standing U-shaped resonator (SUSR) arrays. The SUSR serves as a perfect absorber at a structure-dependent frequency when the polarization of incident light is parallel to the bottom rim of the SUSR. When the incidence polarization is rotated for 90° (perpendicular to the bottom rim of the SUSR), the SUSR turns to a perfect reflector at broadband frequencies. Further, the resonant frequency sensitively depends on the height of the arms of the SUSR. By introducing SUSRs with different arm heights, a resonant absorption state may occur at different frequencies. By defining the resonant absorption state as "dark" and the reflection state as "bright," we can encode and display binary patterns. Beside, when the SUSR rotates with the direction of the standing arms as axis, a different reflectivity, hence, a different shade will be generated. In this way, we may realize a grayscale display. Experimentally, we demonstrate that this encoding and display scheme indeed works.

16.
Opt Lett ; 41(24): 5740-5743, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973520

RESUMO

In this Letter, we present hybrid strong coupling between multiple photonic modes and excitons in an organic-dye-attached photonic quasicrystal. The excitons effectively interact with the photonic modes offered by the photonic quasicrystal, and multiple hybrid polariton bands are demonstrated in both experiments and calculations. Furthermore, by retrieving the measured dispersion map, we get the mixing fractions of photonic modes and excitons, and show that the polariton bands inherit not only the energy dispersion features, but also the damping behaviors from both the photonic modes and the excitons. Our investigation may inspire related studies on multimode light-matter interactions and achieve some potential applications for multimode sensors.

17.
Adv Mater ; 28(33): 7193-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27294561

RESUMO

Constructing conductive/magnetic nanowire arrays with 3D features by electrodeposition remains challenging. An unprecedented fabrication approach that allows to construct metallic (cobalt) nanowires on an arbitrarily shaped surface is reported. The spatial separation of nanowires varies from 70 to 3000 nm and the line width changes from 50 to 250 nm depending on growth conditions.

18.
Chem Sci ; 6(7): 4066-4070, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28717466

RESUMO

In Li-ion batteries (LIBs), a memory effect has been revealed in two-phase electrode materials such as olivine LiFePO4 and anatase TiO2, which complicates the two-phase transition and influences the estimation of the state of charge. Practical electrode materials are usually optimized by the element doping strategy, however, its impact on the memory effect has not been reported yet. Here we firstly present the doping-induced memory effect in LIBs. Pristine Li4Ti5O12 is free from the memory effect, while a distinct memory effect could be induced by Al-doping. After being discharged to a lower cutoff potential, Al-doped Li4Ti5O12 exhibits poorer electrochemical kinetics, delivering a larger overpotential during the charging process. This dependence of the overpotential on the discharging cutoff leads to the memory effect in Al-doped Li4Ti5O12. Our discovery emphasizes the impact of element doping on the memory effect of electrode materials, and thus has implications for battery design.

19.
Adv Mater ; 27(7): 1201-6, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25545177

RESUMO

A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

20.
Opt Express ; 22(21): 25700-9, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401603

RESUMO

In this work, we have experimentally and theoretically studied band modulation and in-plane propagation of surface plasmons (SPs) in composite nanostructures with aperture arrays and metallic gratings. It is shown that the plasmonic band structure of the composite system can be significantly modulated because of coupling between the aperture and grating. By changing the relative positions between these optical components, the resonant modes would shift or split. And the resonant SP modes launched on the structure surface can be effectively modified by the geometric parameters. Further, we provide an experimental observation to directly show the SP in-plane propagation by using far-field measurements, which agree with the simulated results. Our study offers a convenient way for observing the SP propagation in far field, and provides unique composite nanostructures for possible applications in subwavelength optodevices, such as optical sensors and detectors.


Assuntos
Técnicas Biossensoriais/instrumentação , Nanoestruturas/química , Nanotecnologia/instrumentação , Óptica e Fotônica , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Radiação Eletromagnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA