Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12673, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481699

RESUMO

MADS-box transcription factors possess many functions in plant reproduction and development. However, few MADS-box genes related to secondary metabolites regulation have been identified. In Hevea brasiliensis, natural rubber is a representative cis-polyisoprenoids in secondary metabolism which occurs in the rubber laticifer cells, the molecular regulation basis of natural rubber biosynthesis is not clear. Here, a total of 24 MADS-box genes including 4 type I MADS-box genes and 20 type II MADS-box genes were identified in the transcriptome of rubber tree latex. The phylogenetic analysis was performed to clarify the evolutionary relationships of all the 24 rubber tree MADS-box proteins with MADS-box transcription factors from Arabidopsis thaliana and Oryza sativa. Four type I MADS-box genes were subdivided into Mα (3 genes) and Mß (1 gene). Twenty type II MADS-box genes were subclassified into MIKC* (8 genes) and MIKCc (12 genes). Eight MADS-box genes (HblMADS3, 5, 6, 7, 9, 13, 23, 24) were predominant expression in laticifers. ABA up-regulated the expression of HblMADS9, and the expression of HblMADS3, HblMADS5, HblMADS24 were up-regulated by MeJA. The function of HblMADS24 was elucidated. HblMADS24 bound HbFPS1 promoter in yeast and HblMADS24 activated HbFPS1 promoter in tobacco plants. Moreover, we proposed that HblMADS24 is a transcription activator of HbFPS1 which taking part in natural rubber biosynthesis.

2.
Genet Mol Biol ; 2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31441928

RESUMO

Histone methylation plays a crucial role in various biological processes including from heterochromatin formation to transcriptional regulation. Currently, no information is available regarding histone methylation modifiers in the important rubber-producing plant Hevea brasiliensis. Here, we identified 47 histone methyltransferase (HMT) genes and 25 histone demethylase (HDM) genes, as possible members of the histone methylation modifiers in the rubber tree genome. According to the structural features of HMT and HDM, the HbHMTs were classified to two groups (HbPRMs and HbSDGs), the HbHDMs have two groups (HbLSDs and HbJMJs). The expression patterns of HbHMTs and HbHDMs were analyzed in five different tissues and at different phases of somatic embryogenesis. HbSDG10, 21, 25, 33, HbJMJ2, 18, 20 were with high expression at different phases of somatic embryogenesis. HbSDG10,14, 20, 21, 3 and HbPRMT4 were expressed highly in anther, HbSDG14, 20, 21, 22, 23, 33, 35 and HbPRMT1 HbJMJ7 and HbLSD1, 2, 3, 4 showed a high expression level in callus. HbSDG1, 7, 10, 13, 14, 18, 19, 21, 22, 23, 35, HbPRMT1, 8, HbJMJ5, 7, 11, 16, 20 and HbLSD2, 3, 4 were expressed highly in somatic embryo. HbSDG10, 21, 25, 33, HbLSD2, 3 3 were expressed highly in bud of regenerated plant. The expression analyses reveal that HbHMTs and HbHDMs exhibit different expression patterns at different phases during somatic embryogenesis and imply that some HbHMTs and HbHDMs play important roles during somatic embryogenesis. This study will provide fundamental to further study on regulations of histone metylation in Hevea brasiliensis.

3.
J Exp Bot ; 69(8): 1903-1912, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29432591

RESUMO

Hevea brasiliensis is a key commercial source of natural rubber (cis 1,4-polyisoprene). In H. brasiliensis, rubber transferase is responsible for cis-1,4-polymerization of isoprene units from isopentenyl diphosphate and thus affects the yield of rubber. Little is known about the regulatory mechanisms of the rubber transferase gene at a molecular level. In this study we show that the 5'UTR intron of the promoter of the rubber transferase gene (HRT2) suppresses the expression of HRT2. A H. brasiliensis RING zinc finger protein (designated as HbRZFP1) was able to interact specifically with the HRT2 promoter to down-regulate its transcription in vivo. A 14-3-3 protein (named as HbGF14a) was identified as interacting with HbRZFP1, both in yeast and in planta. Transient co-expression of HbGF14a and HbRZFP1-encoding cDNAs resulted in HbRZFP1-mediated HRT2 transcription inhibition being relieved. HbGF14a repressed the protein-DNA binding of HbRZFP1 with the HRT2 promoter in yeast. We propose a regulatory mechanism by which the binding of HbGF14a to HbRZFP1 interferes with the interaction of HbRZFP1 with the HRT2 promoter, thereby repressing the protein-DNA binding between them. This study provides new insights into the role of HbGF14a in mediating expression of the rubber transferase gene in Hevea brasiliensis.


Assuntos
Proteínas 14-3-3/metabolismo , Regulação Enzimológica da Expressão Gênica , Hevea/metabolismo , Proteínas de Plantas/metabolismo , Transferases/genética , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Hevea/química , Hevea/classificação , Hevea/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Domínios RING Finger , Borracha/metabolismo , Alinhamento de Sequência , Transferases/química , Transferases/metabolismo , Dedos de Zinco
4.
J Plant Res ; 131(3): 555-562, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29234988

RESUMO

Dracaena cambodiana is a traditional medicinal plant used for producing dragon's blood. The plants and dragon's blood of D. cambodiana contain a rich variety of steroidal saponins. However, little is known about steroidal saponin biosynthesis and its regulation in D. cambodiana. Here, 122 genes encoding enzymes involved in steroidal saponin biosynthesis were identified based on transcriptome data, with 29 of them containing complete open reading frames (ORF). Transcript expression analysis revealed that several genes related to steroidal saponin biosynthesis showed distinct tissue-specific expression patterns; the expression levels of genes encoding the key enzymes involved in the biosynthesis and early modification of steroidal saponins were significantly down-regulated in the stems in response to the inducer of dragon's blood, exhibiting positive correlations with the content of steroidal saponins. These results provide insights on the steroidal saponins biosynthetic pathway and mechanisms underlying induced formation of dragon's blood in D. cambodiana.


Assuntos
Dracaena/genética , Saponinas/biossíntese , Transcriptoma , Vias Biossintéticas , Dracaena/química , Dracaena/metabolismo , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/química , Saponinas/química
5.
Front Plant Sci ; 8: 1974, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187861

RESUMO

MYB transcription factors hold vital roles in the regulation of plant secondary metabolic pathways. Laticifers in rubber trees (Hevea brasiliensis) are of primary importance in natural rubber production because natural rubber is formed and stored within these structures. To understand the role of MYB transcription factors in the specialized cells, we identified 44 MYB genes (named HblMYB1 to HblMYB44) by using our previously obtained transcriptome database of rubber tree laticifer cells and the public rubber tree genome database. Expression profiles showed that five MYB genes were highly expressed in the laticifers. HblMYB19 and HblMYB44 were selected for further study. HblMYB19 and HblMYB44 bound the promoters of HbFDPS1, HbSRPP, and HRT1 in yeast. Furthermore, the transient overexpression of HblMYB19 and HblMYB44 in tobacco plants significantly increased the activity of the promoters of HbFDPS1, HbSRPP, and HRT1. Basing on this information, we proposed that HblMYB19 and HblMYB44 are the regulators of HbFDPS1, HbSRPP, and HRT1, which are involved in the biosynthesis pathway of natural rubber.

6.
Sci Rep ; 7: 45157, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28332623

RESUMO

Abscisic acid (ABA) is an essential phytohormone involved in diverse physiological processes. Although genome-wide analyses of the ABA receptor PYR/PYL/RCAR (PYL) protein/gene family have been performed in certain plant species, little is known about the ABA receptor protein/gene family in the rubber tree (Hevea brasiliensis). In this study, we identified 14 ABA receptor PYL proteins/genes (designated HbPYL1 through HbPYL14) in the most recent rubber tree genome. A phylogenetic tree was constructed, which demonstrated that HbPYLs can be divided into three subfamilies that correlate well with the corresponding Arabidopsis subfamilies. Eight HbPYLs are highly expressed in laticifers. Five of the eight genes are simultaneously regulated by ABA, jasmonic acid (JA) and ethylene (ET). The identification and characterization of HbPYLs should enable us to further understand the role of ABA signal in the rubber tree.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hevea/genética , Hevea/metabolismo , Família Multigênica , Reguladores de Crescimento de Planta/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Hevea/classificação , Filogenia , Reguladores de Crescimento de Planta/farmacologia , Regiões Promotoras Genéticas , Borracha/metabolismo , Transcriptoma
7.
Sci Rep ; 6: 38315, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922066

RESUMO

Dragon's blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon's blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon's blood formation in D. cambodiana.


Assuntos
Dracaena/genética , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Extratos Vegetais/química , Proteínas de Plantas/genética , Transcriptoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dracaena/metabolismo , Flavonoides/genética , Biblioteca Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina Tradicional , Anotação de Sequência Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/genética , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Repetições WD40
8.
Front Plant Sci ; 7: 1709, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895659

RESUMO

In plants MADS-box transcription factors (TFs) play important roles in growth and development. However, no plant MADS-box gene has been identified to have a function related to secondary metabolites regulation. Here, a MADS-box TF gene, designated as HbMADS4, was isolated from Hevea brasiliensis by the yeast one-hybrid experiment to screen the latex cDNA library using the promoter of the gene encoding H. brasiliensis small rubber particle protein (HbSRPP) as bait. HbMADS4 was 984-bp containing 633-bp open reading frame encoding a deduced protein of 230 amino acid residues with a typical conserved MADS-box motif at the N terminus. HbMADS4 was preferentially expressed in the latex, but little expression was detected in the leaves, flowers, and roots. Its expression was inducible by methyl jasmonate and ethylene. Furthermore, transient over-expression and over-expression of HbMADS4 in transgenic tobacco plants significantly suppressed the activity of the HbSRP promoter. Altogether, it is proposed that HbMADS4 is a negative regulator of HbSRPP which participates in the biosynthesis of natural rubber.

9.
Front Plant Sci ; 7: 1204, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555864

RESUMO

Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

10.
Plant Physiol Biochem ; 104: 304-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27208821

RESUMO

Dragon's blood is a traditional medicine widely used in the world, and the main components of which are flavonoids. However, little is known about its formation mechanism. Previous studies indicate that plant glutathione S-transferase (GST) genes are involved in transportation of flavonoids from cytosolic synthesis to vacuolar accumulation. In this study, 20 Dracaena cambodiana GST genes (DcGSTs) were identified based on transcriptome database. Phylogenetic analysis revealed that 20 DcGSTs belonged to seven different classes. Tissue-specific expression analysis suggested that DcGSTs displayed differential expressions either in their transcript abundance or expression patterns under normal growth conditions. The transcript profiles of three DcGSTs in response to the inducer of dragon's blood were strongly correlated with flavonoids biosynthetic genes, consistent with dragon's blood accumulation. Our survey provides useful information for future studies on GST genes involved in dragon's blood formation in D. cambodiana.


Assuntos
Dracaena/enzimologia , Dracaena/genética , Flavonoides/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glutationa Transferase/genética , Transcriptoma/genética , Flavonoides/biossíntese , Perfilação da Expressão Gênica , Glutationa Transferase/metabolismo , Especificidade de Órgãos/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Front Plant Sci ; 7: 280, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014304

RESUMO

Aquilaria sinensis (Lour.) Gilg is an important medicinal woody plant producing agarwood, which is widely used in traditional Chinese medicine. High-throughput sequencing of chloroplast (cp) genomes enhanced the understanding about evolutionary relationships within plant families. In this study, we determined the complete cp genome sequences for A. sinensis. The size of the A. sinensis cp genome was 159,565 bp. This genome included a large single-copy region of 87,482 bp, a small single-copy region of 19,857 bp, and a pair of inverted repeats (IRa and IRb) of 26,113 bp each. The GC content of the genome was 37.11%. The A. sinensis cp genome encoded 113 functional genes, including 82 protein-coding genes, 27 tRNA genes, and 4 rRNA genes. Seven genes were duplicated in the protein-coding genes, whereas 11 genes were duplicated in the RNA genes. A total of 45 polymorphic simple-sequence repeat loci and 60 pairs of large repeats were identified. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited high A/T content. Moreover, 33 pairs of large repeat sequences were located in the protein-coding genes, whereas 27 pairs were located in the intergenic regions. Aquilaria sinensis cp genome bias ended with A/T on the basis of codon usage. The distribution of codon usage in A. sinensis cp genome was most similar to that in the Gonystylus bancanus cp genome. Comparative results of 82 protein-coding genes from 29 species of cp genomes demonstrated that A. sinensis was a sister species to G. bancanus within the Malvales order. Aquilaria sinensis cp genome presented the highest sequence similarity of >90% with the G. bancanus cp genome by using CGView Comparison Tool. This finding strongly supports the placement of A. sinensis as a sister to G. bancanus within the Malvales order. The complete A. sinensis cp genome information will be highly beneficial for further studies on this traditional medicinal plant. Moreover, the results will enhance our understanding about the evolution of cp genomes of the Malvales order, particularly with regard to the role of A. sinensis in plant systematics and evolution.

12.
Genet Mol Biol ; 39(1): 73-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27007901

RESUMO

Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.

13.
Int J Mol Sci ; 16(9): 22402-14, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26389894

RESUMO

Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development.


Assuntos
Euphorbiaceae/enzimologia , Genes de Plantas , Geraniltranstransferase/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência Conservada , Euphorbiaceae/genética , Regulação da Expressão Gênica de Plantas , Geraniltranstransferase/química , Geraniltranstransferase/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Processamento de RNA
14.
Plant Cell Rep ; 34(9): 1569-78, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25987315

RESUMO

KEY MESSAGE: The HbCZF1 protein binds to the hmg1 promoter in yeast and this interaction was confirmed in vitro. The hmg1 promoter was activated in transgenic plants by HbCZF1. Biosynthesis of natural rubber is known to be based on the mevalonate pathway in Hevea brasiliensis. The final step in the mevalonate production is catalyzed by the branch point enzyme, 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGR), which shunts HMG-CoA into the isoprenoid pathway, leading to the synthesis of natural rubber. However, molecular regulation of HMGR expression is not known. To study the transcriptional regulation of HMGR, the yeast one-hybrid experiment was performed to screen the latex cDNA library using the hmg1 (one of the three HMGR in H. brasiliensis) promoter as bait. One cDNA that encodes the CCCH-type zinc finger protein, designated as HbCZF1, was isolated from H. brasiliensis. HbCZF1 interacted with the hmg1 promoter in yeast one-hybrid system and in vitro. HbCZF1 contains a 1110 bp open reading frame that encodes 369 amino acids. The deduced HbCZF1 protein was predicted to possess a typical C-X7-C-X5-C3-H CCCH motif and RNA recognition motif. HbCZF1 was predominant in the latex, but little expression was detected in the leaves, barks, and roots. Furthermore, in transgenic tobacco plants, over-expression of HbCZF1 highly activated the hmg1 promoter. These results suggested that HbCZF1 may participate in the regulation of natural rubber biosynthesis in H. brasiliensis.


Assuntos
Hevea/enzimologia , Hevea/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteínas de Plantas/genética , Dedos de Zinco/genética , Acetatos/farmacologia , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ciclopentanos/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hevea/efeitos dos fármacos , Dados de Sequência Molecular , Oxilipinas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Tabaco/genética , Transcrição Genética/efeitos dos fármacos
15.
Genet Mol Biol ; 37(3): 549-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25249778

RESUMO

The cDNA encoding the R1-MYB transcription factor, designated as JcR1MYB1, was isolated from Jatropha curcas using rapid amplification of cDNA ends. JcR1MYB1 contains a 951 bp open reading frame that encodes 316 amino acids. The deduced JcR1MYB1 protein was predicted to possess the conserved, 56-amino acid-long DNA-binding domain, which consists of a single helix-turn-helix module and usually occurs in R1-MYBs. JcR1MYB1 is a member of the R1-MYB transcription factor subfamily. A subcellular localization study confirmed the nuclear localization of JcR1MYB1. Expression analysis showed that JcR1MYB1 transcripts accumulated in various examined tissues, with high expression levels in the root and low levels in the stem. JcR1MYB1 transcription was up-regulated by polyethylene glycol, NaCl, and cold treatments, as well as by abscisic acid, jasmonic acid, and ethylene treatment. Analysis of transgenic tobacco plants over-expressing JcR1MYB1 indicates an inportant function for this gene in salt stress.

16.
Genomics ; 104(1): 14-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793160

RESUMO

WRKY proteins constitute a large family of transcription factors. In this study, we identified 81 WRKY genes (named HbWRKY1 to HbWRKY81) in the latest rubber tree genome. Tissue-specific expression profiles showed that 74 HbWRKYs were expressed in at least one of the tissues and the other 7 genes showed very low expression in all tissues tested, which suggested that HbWRKYs took part in many cellular processes. The responses of 20 selected HbWRKYs to jasmonic acid (JA) and ethylene (ET) were analyzed in the latex. 17 HbWRKYs responded to at least one treatment, which included 15 HbWRKYs responding to JA treatment, 15 HbWRKYs to ET, which suggested that these HbWRKYs were regulated by JA and ET. We also observed that HbWRKY3, 14, and 55 bind HbSRPP promoter and activate the transcription in yeast. This study suggests that HbWRKY proteins maybe involved in the transcriptional regulation of nature rubber biosynthesis.


Assuntos
Genes de Plantas , Hevea/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Látex/biossíntese , Dados de Sequência Molecular , Especificidade de Órgãos
17.
Plant Physiol Biochem ; 80: 121-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24751399

RESUMO

The 14-3-3 proteins are a family of conserved phospho-specific binding proteins involved in diverse physiological processes. Although the genome-wide analysis of this family has been carried out in certain plant species, little is known about 14-3-3 protein genes in rubber tree (Hevea brasiliensis). In this study, we identified 10 14-3-3 protein genes (designated as HbGF14a to HbGF14j) in the latest rubber tree genome. A phylogenetic tree was constructed and found to demonstrate that HbGF14s can be divided into two major groups. Tissue-specific expression profiles showed that 10 HbGF14 were expressed in at least one of the tissues, which suggested that HbGF14s participated in numerous cellular processes. The 10 HbGF14s responded to jasmonic acid (JA) and ethylene (ET) treatment, which suggested that these HbGF14s were involved in response to JA and ET signaling. The target of HbGF14c protein was related to small rubber particle protein, a major rubber particle protein that is involved in rubber biosynthesis. These findings suggested that 14-3-3 proteins may be involved in the regulation of natural rubber biosynthesis.


Assuntos
Proteínas 14-3-3/classificação , Proteínas 14-3-3/metabolismo , Hevea/metabolismo , Proteínas de Plantas/metabolismo , Ciclopentanos/farmacologia , Etilenos/farmacologia , Hevea/efeitos dos fármacos , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/classificação
18.
Transgenic Res ; 23(2): 331-40, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24043397

RESUMO

Small rubber particle protein (SRPP) is a major component of Hevea brasiliensis latex, and obviously participates in the biosynthesis of natural rubber. However, little information is available about regulation of SRPP gene expression. In this study, the promoter region of HbSRPP was isolated and characterized. Its sequence included regulatory elements predicted to be responsive to hormones and other environmental cues. Promoter deletion analysis revealed that 219 nucleotides (nt) upstream of the transcription start site were sufficient for expression. The region from -1,055 to -219 nt positively regulated expression induced by methyl jasmonate (MeJA), abscisic acid (ABA), and wounding; the region from -734 to -528 nt positively regulated expression induced by gibberellic acid (GA); the region from -734 to -219 nt positively regulated expression induced by heat; the region from -1,055 to -4 negatively regulated expression induced by cold; the region from -219 to -4 nt was associated with negative regulation of expression induced by ABA and wounding; the region from -528 to -4 nt negatively regulated expression induced by GA. These results suggest the activity of the HbSRPP promoter is regulated by MeJA, ABA, GA, cold, heat, and wounding.


Assuntos
Antígenos de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Hevea/genética , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Clonagem Molecular , Ciclopentanos/farmacologia , Primers do DNA/genética , Fluorometria , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Glucuronidase , Histocitoquímica , Oxilipinas/farmacologia , Elementos Reguladores de Transcrição/genética , Análise de Sequência de DNA , Temperatura Ambiente , Tabaco
19.
Plant Physiol Biochem ; 71: 283-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23988297

RESUMO

Small rubber particle protein (SRPP) is a major component of Hevea brasiliensis (H. brasiliensis) latex, which is involved in natural rubber (NR) biosynthesis. However, little information is available on the regulation of SRPP gene (HbSRPP) expression. To study the transcriptional regulation of HbSRPP, the yeast one-hybrid experiment was performed to screen the latex cDNA library using the HbSRPP promoter as bait. One cDNA that encodes the WRKY transcription factor, designated as HbWRKY1, was isolated from H. brasiliensis. HbWRKY1 contains a 1437 bp open reading frame that encodes 478 amino acids. The deduced HbWRKY1 protein was predicted to possess two conserved WRKY domains and a C2H2 zinc-finger motif. HbWRKY1 was expressed at different levels, with the highest transcription in the flower, followed by the bark, latex, and leaf. Furthermore, the co-expression of pHbSRP::GUS with CaMV35S::HbWRKY1 significantly decreased the GUS activity in transgenic tobacco, indicating that HbWRKY1 significantly suppressed the HbSRPP promoter. These results suggested that HbWRKY1 maybe a negative transcription regulator of HbSRPP involved in NR biosynthesis in H. brasiliensis.


Assuntos
Hevea/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
20.
Gene ; 503(2): 248-53, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22579867

RESUMO

In plants, WRKY proteins constitute a large family of transcription factors. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. A large number of WRKY transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of castor bean (Ricinus communis) has allowed a genome-wide search for R. communis WRKY (RcWRKY) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. A total of 47 WRKY genes were identified in the castor bean genome. According to the structural features of the WRKY domain, the RcWRKY are classified into seven main phylogenetic groups. Furthermore, putative orthologs of RcWRKY proteins in Arabidopsis and rice could now be assigned. An analysis of expression profiles of RcWRKY genes indicates that 47 WRKY genes display differential expressions either in their transcript abundance or expression patterns under normal growth conditions.


Assuntos
Semente de Rícino/genética , Genes de Plantas , Fatores de Transcrição/genética , Sequência de Bases , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Alinhamento de Sequência , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA