RESUMO
OBJECTIVES: To investigate the potential diagnostic value of one-stop combined CT angiography (CTA) as the first examination for patients suspected of coronary artery disease (CAD) or craniocervical artery disease (CCAD), and compare its clinical performance with two consecutive CTA scans. METHODS: Patients with suspected but unconfirmed CAD or CCAD were prospectively enrolled and grouped randomly to undergo coronary and craniocervical CTA using the combined protocol (group 1) or the consecutive protocol (group 2). Diagnostic findings were evaluated for both the targeted and non-targeted regions. The objective image quality, overall scan time, radiation dose, and contrast medium dosage were compared between the two groups. RESULTS: Each group enrolled 65 patients. A substantial number of lesions were found in non-targeted regions, which was 44/65 (67.7%) by patients for group 1 and 41/65 (63.1%) for group 2, reiterating the necessity of extending the scan coverage. Specifically, lesions in non-targeted regions were detected more often for patients suspected of CCAD than for those suspected of CAD (71.4% vs 61.7%). With 21.5% (~51.1 s) reduction of scan time and 21.8% (~20.8 mL) less contrast medium as compared to the consecutive protocol, high-quality images were obtained by the combined protocol. CONCLUSIONS: One-stop combined CTA enables effective detection of lesions in non-targeted regions at a lower cost of scan time and contrast medium than two separate examinations and is thus worth taking as the first examination for patients suspected of CAD or CCAD. KEY POINTS: ⢠Extending the scan range for coronary or craniocervical CTA has the potential to reveal lesions in non-targeted regions. ⢠One-stop combined CTA as enabled on high-speed wide-detector CT delivers high-quality images at a lower cost of contrast medium and operational time than two consecutive CTA scans. ⢠Patients with suspected but unconfirmed CAD or CCAD may benefit from the one-stop combined CTA in the first examination.
RESUMO
Single-atom catalysts (SACs) show expressively enhanced activity toward diverse reactions due to maximized atomic utilization of metal sites, while their facile, universal, and massive preparation remains a pronounced challenge. Here we report a facile strategy for the preparation of SACs by use of the inherent confined space between the template and silica walls in template-occupied mesoporous silica SBA-15 (TOS). Different transition metal precursors can be introduced into the confined space readily by grinding, and during succeeding calcination single atoms are constructed in the form of M-O-Si (M = Cu, Co, Ni, and Zn). In addition to the generality, the present strategy is easy to scale up and can allow the synthesis of 10 g of SACs in one pot through ball milling. The Cu SAC has been applied for CO2 cycloaddition of epichlorohydrin, and the activity is obviously higher than the counterpart prepared without confined space and various reported Cu-containing catalysts.
RESUMO
Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.
Assuntos
Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Nanopartículas , Animais , Galinhas , Alumínio/farmacologia , Emulsões/farmacologia , Antígenos , Imunidade Celular , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Adjuvantes Imunológicos , Polissacarídeos/farmacologiaRESUMO
Oil-in-water emulsion-based adjuvants have demonstrated acceptable safety in many disease indications, while their adjuvant activities for vaccines still need to be improved. Recently, the strategy of combining adjuvants with multiple types of immunostimulants has been shown to enhance immune responses. In this study, astragalus polysaccharides were combined with simvastatin as an immunostimulant to construct a compound O/W emulsion adjuvant. The formulations were optimized according to the OVA-specific antibody responses induced in mice. For this reason, high (5 mg/mL), medium (2.5 mg/mL), and low (1.25 mg/mL) concentrations of astragalus polysaccharides and high (10 mg/mL), medium (1 mg/mL), and low (0.1 mg/mL) concentrations of simvastatin were selected. The final optimal formulation of the immunostimulant was a high concentration of astragalus polysaccharides combined with a medium concentration of simvastatin. The optimal compound O/W emulsion adjuvant could induce effective humoral and cellular immune responses that were stronger and more stable than those induced by aluminum adjuvant and Freund's adjuvant. The OVA/HAPS-MSim-OE induced dramatically strong and persistent IgG expressions and Th1-polarized immune responses. What's more, the highest CD4+/CD8+lymphocyte ratios were observed in OVA/HAPS-MSim-OE group. In addition, compound O/W emulsion adjuvant groups significantly promoted the secretion of IFN-γ and IL-6, which also indicated that the compound O/W emulsion adjuvants could induce both enhanced Th1 and Th2-mediated immune responses but prefer the Th1-mediated ones. This study would contribute to an interesting and promising direction in the development of emulsion-based adjuvants.
Assuntos
Adjuvantes Imunológicos , Sinvastatina , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Emulsões , Imunidade Celular , Polissacarídeos , Água , OvalbuminaRESUMO
In this experiment, the polysaccharide was extracted from Pueraria lobata (Willd.) Ohwi, and its structural characteristics and bioactivity were investigated. The results showed that Pueraria lobata polysaccharide (PLP) was composed of fucose, arabinose, galactose, glucose, xylose, mannose in a molar proportion of 0.09:1.25:2.19:95.74:0.43:0.30 with a number molar masses (Mn) weight of 14.463 kDa. Besides, FT-IR, Methylation, and NMR analysis revealed that PLP were mainly composed of the main chain â4)-α-Glcp (1â and â4,6)-α-Glcp (1â, and the branched chain α-Glcp (1â. In vitro experiment, the results showed that PLP could stimulate the expression of surface molecules on RAW264.7 and (T and B) lymphocytes proliferation, simultaneously to stimulate their cytokines secretion. In vivo experiment, the immune organ index, cytokine content, and T lymphocyte subtype in cyclophosphamide-induced immunosuppressed mice could be improved by PLP. These data proved that PLP could be used as a useful immunomodulator to enhance the immune activity of RAW264.7, T, and B cells and improve the immune function of cyclophosphamide-treated mice.
Assuntos
Pueraria , Animais , Camundongos , Pueraria/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/química , Imunossupressores , Macrófagos , Ciclofosfamida , Imunidade , Linfócitos B , Células RAW 264.7RESUMO
Ischemia/reperfusion injury of the kidney is associated with high morbidity and mortality, and treatment of this injury remains a challenge. G protein-coupled receptor kinase 4 (GRK4) plays a vital role in essential hypertension and myocardial infarction, but its function in kidney ischemia/reperfusion injury remains undetermined. Among the GRK subtypes (GRK2-6) expressed in kidneys, the increase in GRK4 expression was much more apparent than that of the other four GRKs 24 hours after injury and was found to accumulate in the nuclei of injured mouse and human renal tubule cells. Gain- and loss-of-function experiments revealed that GRK4 overexpression exacerbated acute kidney ischemia/reperfusion injury, whereas kidney tubule-specific knockout of GRK4 decreased injury-induced kidney dysfunction. Necroptosis was the major type of tubule cell death mediated by GRK4, because GRK4 significantly increased receptor interacting kinase (RIPK)1 expression and phosphorylation, subsequently leading to RIPK3 and mixed lineage kinase domain-like protein (MLKL) phosphorylation after kidney ischemia/reperfusion injury, but was reversed by necrostatin-1 pretreatment (an RIPK1 inhibitor). Using co-immunoprecipitation, mass spectrometry, and siRNA screening studies, we identified signal transducer and activator of transcription (STAT)1 as a GRK4 binding protein, which co-localized with GRK4 in the nuclei of renal tubule cells. Additionally, GRK4 phosphorylated STAT1 at serine 727, whose inactive mutation effectively reversed GRK4-mediated RIPK1 activation and tubule cell death. Kidney-targeted GRK4 silencing with nanoparticle delivery considerably ameliorated kidney ischemia/reperfusion injury. Thus, our findings reveal that GRK4 triggers necroptosis and aggravates kidney ischemia/reperfusion injury, and its downregulation may provide a promising therapeutic strategy for kidney protection.
RESUMO
Hy-Line Brown chickens' health is closely related to poultry productivity and it is mainly maintained by the immune system, healthy intestinal function, and microflora of chicken. Polysaccharides are biological macromolecules with a variety of activities that can be used as a potential prebiotic to improve poultry health. In this experiment, the function of Alhagi honey polysaccharides (AH) as an immunomodulator on the chicken was investigated. All chicken (120) were randomly distributed to four groups (five replicas/group, six hens/replica). A total of 0.5 mL water was taken orally by the chicken in control group. AH (0.5 mL) in different concentrations (three dosages, 0.3 g/kg, 0.6 g/k, and 1.2 g/kg) were used for the AH-0.3 g/kg, AH-0.6 g/k, and AH-1.2 g/kg group, respectively. The results showed that the growth performance of the chickens and the index of immune organs (the weight of immune organs/the body weight) were enhanced significantly after being AH-treated (p < 0.05). The content of sIgA and cytokines was upregulated remarkably in the intestine after being AH-treated (p < 0.05). The AH treatment significantly enhanced the intestinal epithelial barrier (p < 0.05). Moreover, the percentage of CD4+ and CD8+ T cells in the ileum, spleen, and serum were obviously upscaled (p < 0.05). In addition, the AH treatment significantly enhanced the production of short chain fatty acids (SCFAs) and improved the structure of gut microbiota (p < 0.05). In conclusion, we found that AH-1.2g/kg was the best dosage to improve the chicken's health, and these data demonstrated that AH could be used as a potential tool to enhance growth performance through improving intestine function, immunity, and gut microbiome in chicken.
Assuntos
Microbioma Gastrointestinal , Mel , Animais , Feminino , Linfócitos T CD8-Positivos , Galinhas , Imunidade , Intestinos , Polissacarídeos/farmacologiaRESUMO
Background: Anterior cervical fusion (ACF) has become a standard treatment approach to effectively alleviate symptoms in patients with cervical spondylotic myelopathy and radiculopathy. However, alteration of cervical sagittal alignment may accelerate degeneration at segments adjacent to the fusion and thereby compromise the surgical outcome. It remains unknown whether changes in T1 tilt, an important parameter of cervical sagittal alignment, may cause redistribution of biomechanical loading on adjacent segments after ACF surgery. Objective: The objective was to examine the effects of T1 tilt angles on biomechanical responses (i.e.range of motion (ROM) and intradiscal VonMises stress) of the cervical spine before and after ACF. Methods: C2-T1 FE models for pre- and postoperative C4-C6 fusion were constructed on the basis of our previous work. Varying T1 tilts of -10°, -5°, 0°, 5°, and 10° were modeled with an imposed flexion-extension rotation at the T1 inferior endplate for the C2-T1 models. The flexion-extension ROM and intradiscal VonMises stress of functional spinal units were compared between the pre- and postoperative C2-T1 FE models of different T1 tilts. Results: The spinal segments adjacent to ACF demonstrated higher ROM ratios after the operation regardless of T1 tilt. The segmental ROM ratio distribution was influenced as T1 tilt varied and loading conditions, which were more obvious during displacement-control loading of extension. Regardless of T1 tilt, intradiscal VonMises stress was greatly increased at the adjacent segments after the operation. As T1 tilt increased, intradiscal stress at C3-C4 decreased under 30° flexion and increased under 15° extension. The contrary trend was observed at the C6-C7 segment, where the intradiscal stress increased with the increasing T1 tilt under 30° flexion and decreased under 15° extension. Conclusion: T1 tilt change may change biomechanical loadings of cervical spine segments, especially of the adjacent segments after ACF. Extension may be more susceptible to T1 tilt change.
RESUMO
BACKGROUND: Genetic profiling of patients with prostate cancer could potentially identify mutations prone to castration-resistant prostate cancer (CRPC). Here, we aimed to identify the differences in genetic profiles of patients with hormone-sensitive prostate cancer (HSPC) and CRPC and stratify HSPC patients to identify mutations associated with CRPC progression. METHODS: A total of 103 samples were collected, including 62 DNA samples from the tumor tissues of 59 HSPC patients and 41 cell-free DNA (cfDNA) samples from prostate cancer patients at different cancer stages. Targeted sequence was conducted on both the tissue DNA and cfDNA. The associations between mutations and clinical outcomes (CRPC-free time) were analyzed using χ2 test, logistic regression analysis, Kaplan-Meier analysis, and Cox regression analysis. RESULTS: By comparing to that of cfDNA sequencing, the results from DNA sequencing of 1-needle (80%) and mixed 12-needle (77.8%) biopsies are highly comparable. FOXA1 (30.5%), CDK12 (23.7%), and TP53 (22.0%) were the top 3 most frequently mutated genes in HSPC patients; 50.8% (30/59) and 44.1% (26/59) HSPC patients had mutations in DDR and HRR pathway, respectively. Mutations in AR and APC as well as the members involved in the regulation of stem cell pluripotency and EMT pathway were often observed in CRPC samples. We established a panel of four genetic mutations (MSH2, CDK12, TP53, and RB1) to predict the risk of CRPC early progression with concordance index = 0.609 and the area under curve of the ROC curve as 0.838. CONCLUSIONS: In this study, we demonstrated that the cfDNA can be used in genetic profiling in prostate cancer and our newly established panel is capable of predicting which mHSPC patient has a high risk of early CRPC progression.
RESUMO
Solid superbases can catalyze diverse reactions under mild conditions, while they suffer from aggregation of basic sites and poor stability during recycling. Here we report a new generation of solid superbases derived from K single atoms (SAs) prepared by a tandem redox strategy. The initial redox reaction takes place between base precursor KNO3 and graphene support, producing K2 O at 400 °C. Further increasing the temperature to 800 °C, the graphene reduces K2 O to K anchored by its vacancies, leading to the generation of K SAs (denoted as K1 /G). The source of basicity in the K1 /G is K SAs, and neighboring single atoms (NSAs) possess superbasicity, which is different from conventional basicity originated from oxygen and nitrogen atoms. Due to the superbasicity as well as high dispersion and anchoring of basic sites, the K1 /G shows excellent catalytic activity and stability in transesterification reaction, which is much superior to the reported catalysts.
RESUMO
Background: Chronic kidney disease, a global public health problem, results in kidney damage or a gradual decline in the glomerular filtration rate. Alport syndrome is commonly characterized by chronic glomerulonephritis caused by a structural disorder in the glomerular basement membrane. Currently, three disease-causing genes, namely collagen type IV alpha 3-5 (COL4A3, COL4A4, and COL4A5), have been associated with the occurrence of Alport syndrome. Methods: We enrolled a Chinese family where the affected individuals suffered from recurrent hematuria and proteinuria. The proband was selected for whole-exome sequencing to identify the pathogenic mutations in this family. Results: After data filtering, a novel heterozygous COL4A4 variant (NM_000092: c.853G>A/p. G285A) was identified as the putative genetic lesion in the affected individuals. Further co-segregation analysis using Sanger sequencing confirmed that this novel COL4A4 mutation (c.853G>A/p. G285A) exists only in the affected individuals and is absent in other healthy family members as well as in the control cohort of 200 individuals from the same locality. According to American College of Medical Genetics and Genomics guidelines, the mutation was classified as 'potentially pathogenic'. A bioinformatics-based prediction analysis revealed that this mutation is pathogenic and may disrupt the structure and function of type IV collagen. This variant is located at an evolutionarily conserved site of COL4A4. Conclusion: In this study, we identified a novel heterozygous COL4A4 variant (c.853G>A) in a Chinese AS family and assisted to diagnose this AS proband as autosomal-dominant Alport syndrome (ADAS). Our study expands the spectrum of Alport syndrome mutations and contributes to the genetic counseling and diagnosis of patients with Alport syndrome.
RESUMO
MicroRNAs (miRs) are regulators of number of cellular process. miRs enclosed within exosomes can be crucial regulators of intercellular signalling and could be an important biomarker of various age-associated disorders. Role of exosomal enclosed miRs in osteoarthritis (OA) chondrocytes and synovial fibroblasts (SFBs) remains poorly studied. Here, we profiled and studied the effect of synovial fluid-derived exosomal miRs on inflammation, survival, proliferation of chondrocyte in correlation with cartilage degeneration. Exosomes were isolated from synovial fluid collected from OA subjects and were analysed by transmission electron microscopy. miRs were isolated and were submitted to microarray profiling. Web-based PCR analysis was done. Chondrocyte proliferation and colony formation assay were performed. Apoptosis study was done by flow cytometer. Gene expression was done by qRT-PCR analysis and protein expression by western blot assay. Rat model of OA was created by operating the knee by anterior cruciate ligament and resection of medial menisci (ACLT + MMx) method. Micro-CT analysis, histological analysis, immunohistochemical staining, and TUNEL assay were also performed. About 17 miRs were found to be expressed differentially in the synovial fluid collected from the control and OA subjects. Microarray analysis confirmed, expression of miR-214-3p was significantly downregulated in the synovial fluid exosome of OA subjects. miR-214-3p mimic promoted proliferation of chondrocyte and suppressed apoptosis. Treatment also inhibited the levels of TNF-α, IL-1ß and IL-6. SFB-miR-214-3p exosomes suppressed apoptosis and also inflammation in chondrocytes. In vivo study suggested that SFB-exosomal miR-214-3p from rats suppressed the formation of osteophytes, prevented degeneration of cartilage and exerted anti-inflammatory and anti-apoptotic effect in articular cartilage tissue. The findings suggested that SFB-miR-214-3p exosomes can ameliorate chondrocyte inflammation and degeneration of cartilage tissues. The study confirms therapeutic potential of SFB-miR-214-3p exosomes in treating OA.
RESUMO
As an important ingredient of Chinese yam, Chinese yam polysaccharides have received wide attention for their remarkable adjuvant activity. Pickering emulsion is an attractive platform for the delivery of vaccines. Our previous study has demonstrated that the Chinese yam polysaccharides PLGA-stabilized Pickering emulsion (CYP-PPAS) is a potentially safe and efficient adjuvant to improve the immune response. In this work, we further investigate the adjuvant activity of CYP-PPAS on cellular immunity. In vitro, the CYP-PPAS increased antigen uptake efficiency by DCs. In vivo, CYP-PPAS triggered the recruitment of DCs and macrophages and subsequently facilitated DCs maturation and antigen migration to lymph nodes. Furthermore, CYP-PPAS induced a robust humoral response and Th1/Th2 immune response, enhanced the activation of CD4+ and CD8+ T lymphocyte subpopulations, and also promoted the activation of cytotoxic T lymphocyte response. As a result, the CYP-PPAS serves as a promising vaccine delivery system to induce robust humoral and cellular immunities against diseases.
Assuntos
Dioscorea , Vacinas , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos , Emulsões , Imunidade Celular , Imunidade Humoral , Camundongos , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , PolissacarídeosRESUMO
This study investigated the structure of acidic Pueraria lobata polysaccharide (a-PLP) and its bioactive effects on intestinal function in cyclophosphamide (CY)-treated mice. The structure of a-PLP was preliminarily analyzed, and the results showed that it is composed of fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar proportion of 2.54:16.52: 6.14: 16.60: 4.05: 4.75: 0.48: 47.44: 1.47 with a weight average molecular weight of 22.675 kDa. In addition, the methylation analysis suggested that 4-Gal(p)-UA may be the main backbone of a-PLP. Furthermore, a-PLP (1.2 g/kg, 0.8 g/kg, and 0.4 g/kg) was administered orally for the treatment of CY-treated mice. The results showed that a-PLP could remarkably relieved weight loss and intestinal villous atrophy in CY-treated mice. Meanwhile, the secretion levels of sIgA, ß-defensin, cytokines, Mucin-2, and tight junction proteins increased significantly. Moreover, the ratio of T (CD4+ and CD8+) cells in the Peyer's patches and mesenteric lymph nodes also increased remarkably, along with the number of goblet cells. Furthermore, a-PLP decreased the levels of diamino oxidase and malondialdehyde, but up-regulated the activity of superoxide dismutase. In summary, a-PLP exhibited great benefits by attenuating CY side effects, opening a potential avenue to effectively treat cancer and reduce the suffering of chemotherapy patients.
Assuntos
Pueraria , Animais , Ciclofosfamida/farmacologia , Ácido Glucurônico , Manose , Camundongos , Polissacarídeos/químicaRESUMO
In many clinical studies, prebiotics have been used as adjuvant therapy for inflammatory bowel disease (IBD). Phellinus igniarius polysaccharide (PIP) possesses great anti-inflammatory and prebiotic activities. Herein, we developed an orally deliverable PIP-loaded chitosan-modified PLGA nanomedicine (CS-PIPP) to investigate its anti-inflammatory effect in vitro and in vivo. Dextran sodium sulfate (DSS)-induced colitis model was established to evaluate the preventive effect of CS-PIPP on IBD. This study characterized that CS-PIPP had a size of 288.7 ± 5.49 nm, positive zeta potential, and showed good stability over four weeks. The in-vitro study suggested that CS-PIPP had enhanced phagocytosis by macrophages, which could further significantly inhibit M1-like macrophages phenotype and regulate lipopolysaccharide (LPS)-induced inflammatory cytokines. The in-vivo study revealed that CS-PIPP prominently prevented intestinal inflammatory damage and protected the integrity of the intestinal barrier. Moreover, CS-PIPP increased the contents of short-chain fatty acids (SCFAs) and positively regulated the gut microbiota. Specifically, CS-PIPP reduced enteropathogenic microorganisms while increasing the beneficial microbiota, including Lactobacillus and Akkermansia, which revealed the potential of CS-PIPP as prebiotics. Generally, CS-PIPP promoted the anti-inflammatory effect of PIP, so it could be regarded as a novel and potent nanoformulation to treat IBD.
Assuntos
Quitosana , Doenças Inflamatórias Intestinais , Nanopartículas , Anti-Inflamatórios/farmacologia , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Phellinus , Polissacarídeos/farmacologiaRESUMO
Cyclic nucleotide-gated channels (CNGCs) constitute a family of non-selective cation channels that are primarily permeable to Ca2+ and activated by the direct binding of cyclic nucleotides (i.e., cAMP and cGMP) to mediate cellular signaling, both in animals and plants. Until now, our understanding of CNGCs in cotton (Gossypium spp.) remains poorly addressed. In the present study, we have identified 40, 41, 20, 20, and 20 CNGC genes in G. hirsutum, G. barbadense, G. herbaceum, G. arboreum, and G. raimondii, respectively, and demonstrated characteristics of the phylogenetic relationships, gene structures, chromosomal localization, gene duplication, and synteny. Further investigation of CNGC genes in G. hirsutum, named GhCNGC1-40, indicated that they are not only extensively expressed in various tissues and at different developmental stages, but also display diverse expression patterns in response to hormones (abscisic acid, salicylic acid, methyl jasmonate, ethylene), abiotic (salt stress) and biotic (Verticillium dahlia infection) stimuli, which conform with a variety of cis-acting regulatory elements residing in the promoter regions; moreover, a set of GhCNGCs are responsive to cAMP signaling during cotton fiber development. Protein-protein interactions supported the functional aspects of GhCNGCs in plant growth, development, and stress responses. Accordingly, the silencing of the homoeologous gene pair GhCNGC1&18 and GhCNGC12&31 impaired plant growth and development; however, GhCNGC1&18-silenced plants enhanced Verticillium wilt resistance and salt tolerance, whereas GhCNGC12&31-silenced plants had opposite effects. Together, these results unveiled the dynamic expression, differential regulation, and functional diversity of the CNGC family genes in cotton. The present work has laid the foundation for further studies and the utilization of CNGCs in cotton genetic improvement.
Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Proteínas de Plantas/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Variação Genética , Gossypium/metabolismo , Família Multigênica , Proteínas de Plantas/metabolismoRESUMO
Solid strong bases with an ordered pore structure (OPS-SSBs) have attracted much attention because of their high catalytic activity and shape selectivity as heterogeneous catalysts in various reactions. Nevertheless, high temperatures are required to fabricate OPS-SSBs by using traditional methods. Herein, we report for the first time that the coordination solvents affect basicity generation in metal-organic frameworks (MOFs) greatly and that strong basicity can be formed at comparatively low temperatures. A typical MOF, MIL-53, was employed, and three different solvents, namely, water, methanol, and N,N-dimethylformamide (DMF), were coordinated, respectively, by means of solvent exchange. Thermogravimetry-mass spectrometer analysis shows that the conversion temperature of base precursor KNO3 is quite different on MIL-53 coordinated with different solvents. The conversion of KNO3 to basic sites takes place at 350, 300, and 250 °C on MIL-53 coordinated with water, methanol, and DMF, respectively. It is fascinating to observe the generation temperature of strongly basic sites at 250 °C, which is noticeably lower than that on various supports, such as mesoporous silica SBA-15 (600 °C), zeolite Y (700 °C), and metal oxide ZrO2 (730 °C). This is due to the redox interaction between coordination solvents and KNO3, leading to a significant decrease in the temperature for KNO3 conversion. Consequently, OPS-SSBs were prepared successfully with an ordered pore structure and strong basicity. The obtained OPS-SSBs show good shape selectivity in Knoevenagel condensation of aromatic aldehydes with different active methylene compounds. Moreover, these solid bases are highly active in the synthesis of dimethyl carbonate through transesterification reaction. This work might open up a new avenue for the fabrication of various functional materials at low temperatures through redox interactions.
RESUMO
BACKGROUND: Chronic refractory wounds were common and the treatments were complicated for burn and plastic surgeons. This study was to investigate the bacterial distribution characteristics and bacterial drug resistance of chronic refractory wound secretions. METHODS: The authors retrospectively analyzed 425 patients with chronic refractory wound infection. The results of bacterial culture of wound secretions and drug sensitivity test were retrospectively analyzed. Further, the location area of the wound was divided into 4 regions, and the difference of the bacterial culture results between different regions was analyzed. RESULTS: The wound secretions were cultured into 401 bacterial strains, including 206 gram-positive bacteria strains, accounting for 51.4%, with the highest detection rate of Staphylococcus aureus at 26.2% (105/401). There were 195 gram-negative bacteria strains, accounting for 48.6%, with the highest detection rate of Pseudomonas aeruginosa at 14.2% (57/401). There were 6 fungal strains. The proportion of gram-negative bacteria in the III region of the wound zone was significantly greater than that in the other 3 regions. CONCLUSIONS: The detection rate of gram-positive bacteria and gram-negative bacteria of chronic refractory wound secretions is not much different. However, in the area close to the perineum (III region), gram-negative bacteria is significantly higher, which has a certain reference value for the use of antibiotics in clinical practice. LEVEL OF EVIDENCE: Level 4.
Assuntos
Queimaduras , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Queimaduras/complicações , Farmacorresistência Bacteriana , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Estudos RetrospectivosRESUMO
Objective@#To understand the prevalence of low vision among Tujia and Han children and adolescents in Tujia inhabited areas, and to provide reference for the prevention and control of myopia in children and adolescents in minority areas.@*Methods@#A cluster sampling of Tujia and Han primary school students from two primary schools in Lichuan City, Enshi Tujia and Miao Autonomous Prefecture, Hubei Province (2 466 Tujia and 971 Han) were selected for visual acuity assessment. Univariate χ 2 test and multivariate Logistic analysis were used. Low vision and associated factors between Tujia and Han nationality were compared.@*Results@#The overall detection rate of low vision among children and adolescents in Tujia inhabited areas was 44.9%. There were differences in the degree of low vision in the left and right eyes of individuals, and the detection rate of low vision varied significantly by ethnic, gender and grade ( χ 2=22.10, 18.43, 19.06, 17.97 for the left eye, 17.52, 20.44, 21.49, 18.61 for the right eye, P < 0.05). There were many factors affecting low vision among children and adolescents in Tujia inhabited areas, overweight and obesity were negatively associated with low vision ( OR=1.81, 1.70, 95%CI=1.76-1.92, 1.66-1.82, P <0.01).@*Conclusion@#Low vision is highly prevalent in Tujia children and adolescents. Effective intervention measures should be taken to treat and prevent myopia in children and adolescents.
RESUMO
BACKGROUND: Carcass length is very important for body size and meat production for swine, thus understanding the genetic mechanisms that underly this trait is of great significance in genetic improvement programs for pigs. Although many quantitative trait loci (QTL) have been detected in pigs, very few have been fine-mapped to the level of the causal mutations. The aim of this study was to identify potential causal single nucleotide polymorphisms (SNPs) for carcass length by integrating a genome-wide association study (GWAS) and functional assays. RESULTS: Here, we present a GWAS in a commercial Duroc × (Landrace × Yorkshire) (DLY) population that reveals a prominent association signal (P = 4.49E-07) on pig chromosome 17 for carcass length, which was further validated in two other DLY populations. Within the detected 1 Mb region, the BMP2 gene stood out as the most likely causal candidate because of its functions in bone growth and development. Whole-genome gene expression studies showed that the BMP2 gene was differentially expressed in the cartilage tissues of pigs with extreme carcass length. Then, we genotyped an additional 267 SNPs in 500 selected DLY pigs, followed by further whole-genome SNP imputation, combined with deep genome resequencing data on multiple pig breeds. Reassociation analyses using genotyped and imputed SNP data revealed that the rs320706814 SNP, located approximately 123 kb upstream of the BMP2 gene, was the strongest candidate causal mutation, with a large association with carcass length, with a ~ 4.2 cm difference in length across all three DLY populations (N = 1501; P = 3.66E-29). This SNP segregated in all parental lines of the DLY (Duroc, Large White and Landrace) and was also associated with a significant effect on body length in 299 pure Yorkshire pigs (P = 9.2E-4), which indicates that it has a major value for commercial breeding. Functional assays showed that this SNP is likely located within an enhancer and may affect the binding affinity of transcription factors, thereby regulating BMP2 gene expression. CONCLUSIONS: Taken together, these results suggest that the rs320706814 SNP on pig chromosome 17 is a putative causal mutation for carcass length in the widely used DLY pigs and has great value in breeding for body size in pigs.