Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtros adicionais

Intervalo de ano
Biosci Rep ; 39(6)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31092699


Introduction: The treatment strategy for low-grade gliomas (LGGs) is still controversial, and there are no standardized criteria to predict the prognosis of patients with LGGs. Magnetic resonance imaging (MRI) is a routine test for preoperative diagnosis for LGG and can reflect the destructive features for the tumor. In the present study, we aimed to explore the relationship between the MRI features and prognosis in patients with LGG.Methods: Clinical data of 80 patients with pathologically proved LGGs between January 2010 and December 2016 were analyzed retrospectively. MRI features were classified as contrast enhancement pattern (focal enhancement, diffuse enhancement and ring-like enhancement), necrosis and cysts based on the preoperative MR images. Kaplan-Meier method and multivariate analysis were performed on the data by SPSS software to explore the prognostic significance of MRI features.Results: Patients with cystic LGG had a significantly longer 5-year progression-free survival (PFS) than that with no cyst (90.9 ± 8.7 vs 65.7 ± 9.1%, P=0.045). Multivariate analysis further verified cyst as an independent prognosis factor for PFS (P=0.027, hazard ratio [HR] = 0.084). Additionally, patients with ring-like enhancement exhibited significantly longer 5-year PFS time in the Kaplan-Meier survival curves (100 vs 67.2 ± 7.7%, P=0.049). There was no significant difference in PFS and overall survival (OS) between patients with or without necrosis.Conclusion: Our study suggests that cyst formation and ring-like enhancement on preoperative MR images can be useful to predict a favorable prognosis in patients with LGGs.

Biochem Biophys Res Commun ; 480(4): 602-607, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27793671


Dopamine is a neurotransmitter that has many functions in the nervous and immune systems. Ferroptosis is a non-apoptotic form of regulated cell death that is involved in cancer and neurodegenerative diseases. However, the role of dopamine in ferroptosis remains unidentified. Here, we show that the non-oxidative form of dopamine is a strong inhibitor of ferroptotic cell death. Dopamine dose-dependently blocked ferroptosis in cancer (PANC1 and HEY) and non-cancer (MEF and HEK293) cells following treatment with erastin, a small molecule ferroptosis inducer. Notably, dopamine reduced erastin-induced ferrous iron accumulation, glutathione depletion, and malondialdehyde production. Mechanically, dopamine increased the protein stability of glutathione peroxidase 4, a phospholipid hydroperoxidase that protects cells against membrane lipid peroxidation. Moreover, dopamine suppressed dopamine receptor D4 protein degradation and promoted dopamine receptor D5 gene expression. Thus, our findings uncover a novel function of dopamine in cell death and provide new insight into the regulation of iron metabolism and lipid peroxidation by neurotransmitters.

Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Dopamina/farmacologia , Ferro/metabolismo , Peroxidação de Lipídeos/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução