Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Nutrition ; 83: 111058, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33360033


Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.

Artigo em Inglês | MEDLINE | ID: mdl-33314677


During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.

Chin Med ; 15: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411290


Background: Chronic alcohol consumption disrupts psychomotor and cognitive functions, most of which are subserved by the dysfunction of hippocampus. Dysregulated excitatory glutamatergic transmission is implicated in repeated alcohol induced psychomotor and cognitive impairment. Ginsenoside Rg1, one of the main active ingredient of the traditional tonic medicine Panax ginseng C.A. Meyer (Araliaceae), has been used to treat cognitive deficits. Particularly, Rg1 has been demonstrated to improve hippocampus-dependent learning in mice and attenuate glutamate-induced excitotoxicity in vitro. Thus, in the present research, we sought to investigate the therapeutic effects of Ginsenoside Rg1 on repeated alcohol induced psychomotor and cognitive deficits in hippocampal-dependent behavioral tasks and unravel the underpinnings of its neuroprotection. Methods: Male ICR (CD-1) mice were consecutively intragastrically treated with 20% (w/v) alcohol for 21 days. Then, behavior tests were conducted to evaluate repeated alcohol induced psychomotor and cognitive deficits. Histopathological changes, and biochemical and molecular alterations were assessed to determine the potential neuroprotective mechanism of Rg1. Results: The results suggested that Rg1, at the optimal dose of 6 mg/kg, has the potential to ameliorate repeated alcohol induced cognitive deficits by regulating activities of NR2B containing NMDARs and excitotoxic signaling. Conclusion: Our findings further provided a new strategy to treat chronic alcohol exposure induced adverse consequences.