Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 238: 124560, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31437632

RESUMO

Plastics are the most abundant marine debris globally dispersed in the oceans and its production is rising with documented negative impacts in marine ecosystems. However, the chemical-physical and biological interactions occurring between plastic and planktonic communities of different types of microorganisms are poorly understood. In these respects, it is of paramount importance to understand, on a molecular level on the surface, what happens to plastic fragments when dispersed in the ocean and directly interacting with phytoplankton assemblages. This study presents a computer-aided analysis of electron paramagnetic resonance (EPR) spectra of selected spin probes able to enter the phyoplanktonic cell interface and interact with the plastic surface. Two different marine phytoplankton species were analyzed, such as the diatom Skeletonema marinoi and dinoflagellate Lingulodinium polyedrum, in absence and presence of polyethylene terephthalate (PET) fragments in synthetic seawater (ASPM), in order to in-situ characterize the interactions occurring between the microalgal cells and plastic surfaces. The analysis was performed at increasing incubation times. The cellular growth and adhesion rates of microalgae in batch culture medium and on the plastic fragments were also evaluated. The data agreed with the EPR results, which showed a significant difference in terms of surface properties between the diatom and dinoflagellate species. Low-polar interactions of lipid aggregates with the plastic surface sites were mainly responsible for the cell-plastic adhesion by S. marinoi, which is exponentially growing on the plastic surface over the incubation time.


Assuntos
Diatomáceas/metabolismo , Dinoflagelados/metabolismo , Microalgas/crescimento & desenvolvimento , Fitoplâncton/metabolismo , Plásticos/metabolismo , Polietilenotereftalatos/metabolismo , Ecossistema , Espectroscopia de Ressonância de Spin Eletrônica , Microalgas/metabolismo , Oceanos e Mares , Água do Mar/química , Resíduos/análise
2.
Toxins (Basel) ; 11(5)2019 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130661

RESUMO

In September 2015, a massive occurrence of the Ostreopsis species was recorded in central Adriatic Kastela Bay. In order to taxonomically identify the Ostreopsis species responsible for this event and determine their toxin profile, cells collected in seawater and from benthic macroalgae were analyzed. Conservative taxonomic methods (light microscopy and SEM) and molecular methods (PCR-based assay) allowed the identification of the species Ostreopsis cf. ovata associated with Coolia monotis. The abundance of O. cf. ovata reached 2.9 × 104 cells L-1 in seawater, while on macroalgae, it was estimated to be up to 2.67 × 106 cells g-1 of macroalgae fresh weight and 14.4 × 106 cells g-1 of macroalgae dry weight. An indirect sandwich immunoenzymatic assay (ELISA) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) were used to determine the toxin profile. The ELISA assay revealed the presence of 5.6 pg palytoxin (PLTX) equivalents per O. cf. ovata cell. LC-HRMS was used for further characterization of the toxin profile, which showed that there were 6.3 pg of the sum of ovatoxins (OVTXs) and isobaric PLTX per O. cf. ovata cell, with a prevalence of OVTXs (6.2 pg cell-1), while the isobaric PLTX concentration was very low (0.1 pg cell-1). Among OVTXs, the highest concentration was recorded for OVTX-a (3.6 pg cell-1), followed by OVTX-b (1.3 pg cell-1), OVTX-d (1.1 pg cell-1), and OVTX-c (0.2 pg cell-1).

3.
Sci Rep ; 9(1): 4166, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862824

RESUMO

Increased anthropic pressure on the coastal zones of the Mediterranean Sea caused an enrichment in nutrients, promoting microalgal proliferation. Among those organisms, some species, such as the dinoflagellate Alexandrium minutum, can produce neurotoxins. Toxic blooms can cause serious impacts to human health, marine environment and economic maritime activities at coastal sites. A mathematical model predicting the presence of A. minutum in coastal waters of the NW Adriatic Sea was developed using a Random Forest (RF), which is a Machine Learning technique, trained with molecular data of A. minutum occurrence obtained by molecular PCR assay. The model is able to correctly predict more than 80% of the instances in the test data set. Our results showed that predictive models may play a useful role in the study of Harmful Algal Blooms (HAB).

4.
Chemosphere ; 215: 881-892, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30408884

RESUMO

Paralytic shellfish toxins (PST) and tetrodotoxin (TTX) are naturally-occurring toxins that may contaminate the food chain, inducing similar neurological symptoms in humans. They are co-extracted under the same conditions and thus their combined detection is desirable. Whilst PST are regulated and officially monitored in Europe, more data on TTX occurrence in bivalves and gastropods are needed before meaningful regulations can be established. In this study, we used three separate analytical methods - pre-column oxidation with liquid chromatography and fluorescence detection, ultrahigh performance hydrophilic interaction liquid chromatography (HILIC) tandem mass spectrometry (MS/MS) and HILIC high resolution (HR) MS/MS - to investigate the presence of PST and TTX in seawater and shellfish (mussels, clams) collected in spring summer 2015 to 2017 in the Mediterranean Sea. Samples were collected at 10 sites in the Syracuse Bay (Sicily, Italy) in concomitance with a mixed bloom of Alexandrium minutum and A. pacificum. A very high PST contamination in mussels emerged, unprecedentedly found in Italy, with maximum total concentration of 10851 µg saxitoxin equivalents per kg of shellfish tissue measured in 2016. In addition, for the first time TTX was detected in Italy in most of the analysed samples in the range 0.8-6.4 µg TTX eq/kg. The recurring blooms of PST-producing species over the 3-year period, the high PST levels and the first finding of TTX in mussels from the Syracuse bay, suggest that monitoring programmes of PST and TTX in seafood should be activated in this geographical area.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Intoxicação por Frutos do Mar/diagnóstico , Frutos do Mar/efeitos adversos , Espectrometria de Massas em Tandem/métodos , Tetrodotoxina/metabolismo , Animais , Peixes , Humanos , Itália , Sicília
5.
Environ Pollut ; 244: 617-626, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384067

RESUMO

Plastic debris carry fouling a variety of class-size organisms, among them harmful microorganisms that potentially play a role in the dispersal of allochthonous species and toxic compounds with ecological impacts on the marine environment and human health. We analyzed samples of marine plastics floating at the sea surface using a molecular qPCR assay to quantify the attached microalgal taxa, in particular, harmful species. Diatoms were the most abundant group of plastic colonizers with maximum abundance of 8.2 × 104 cells cm-2 of plastics, the maximum abundance of dinoflagellates amounted to 1.1 × 103 cells cm-2 of plastics. The most abundant harmful microalgal taxon was the diatom Pseudo-nitzschia spp., including at least 12 toxic species, and the dinoflagellate Ostreopsis cf. ovata with 6606 and 259 cells cm-2, respectively. The abundance of other harmful microalgal species including the toxic allochthonous dinoflagellate Alexandrium pacificum ranged from 1 to 73 cells cm-2. In the present study, a direct relationship between the abundance of harmful algal species colonizing the plastic substrates and their toxin production was found. The levels of potential toxins on plastic samples ranged from 101 to 102 ng cm-2, considering the various toxin families produced by the colonized harmful microalgal species. We also measured the rate of adhesion by several target microalgal species. It ranged from 1.8 to 0.3 day-1 demonstrating the capacity of plastic substrate colonizing rapidly by microalgae. The present study reports the first estimates of molecular quantification of microorganisms including toxin producing species that can colonize plastics. Such findings provide important insights for improving the monitoring practice of plastics and illustrate how the epi-plastic community can exacerbate the harmful effects of plastics by dispersal, acting as an alien and toxic species carrier and potentially being ingested through the marine trophic web.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Dinoflagelados/crescimento & desenvolvimento , Monitoramento Ambiental , Toxinas Marinhas/análise , Microalgas/crescimento & desenvolvimento , Plásticos/química , Diatomáceas/isolamento & purificação , Dinoflagelados/isolamento & purificação , Humanos , Microalgas/isolamento & purificação , Resíduos/análise
6.
Colloids Surf B Biointerfaces ; 161: 620-627, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156339

RESUMO

The silicon transport and use inside cells are key processes for understanding how diatoms metabolize this element in the silica biogenic cycle in the ocean. A spin-probe electron paramagnetic resonance (EPR) study over time helped to investigate the interacting properties and the internalization mechanisms of silicic acid from different silicon sources into the cells. Diatom cells were grown in media containing biogenic amorphous substrates, such as diatomaceous earth and sponge spicules, and crystalline sodium metasilicate. It was found that the amorphous biogenic silicon slowed down the internalization process probably due to formation of colloidal particles at the cell surface after silicic acid condensation. Weaker interactions occurred with sponge spicules silicon source if compared to the other sources. The EPR results were explained by analyzing transcript level changes of silicon transporters (SITs) and silaffins (SILs) in synchronized Thalassiosira pseudonana cultures over time. The results indicated that the transport role of SITs is minor for silicic acid from both biogenic and crystalline substrates, and the role of SIT3 is linked to the transport of silicon inside the cells, mainly in the presence of sponge spicules. SIL3 transcripts were expressed in the presence of all silicon sources, while SIL1 transcripts only with sponge spicules. The data suggest that the transport of silicic acid from various silicon sources in diatoms is based on different physico-chemical interactions with the cell surface.


Assuntos
Coloides/química , Diatomáceas/química , Ácido Silícico/química , Dióxido de Silício/química , Silício/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Coloides/metabolismo , Diatomáceas/genética , Diatomáceas/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ácido Silícico/metabolismo , Silício/metabolismo , Dióxido de Silício/metabolismo , Propriedades de Superfície
7.
Environ Sci Technol ; 51(23): 13920-13928, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29131595

RESUMO

Fifty-five strains of Ostreopsis were collected in the Mediterranean Sea and analyzed to characterize their toxin profiles. All the strains were grown in culture under the same experimental conditions and identified by molecular PCR assay based on the ITS-5.8S rDNA. A liquid chromatography-high resolution multiple stage mass spectrometry (LC-HRMSn) approach was used to analyze toxin profiles and to structurally characterize the detected toxins. Despite morphological and molecular characterization being consistent within the species O. cf. ovata, a certain degree of toxin variability was observed. All the strains produced ovatoxins (OVTXs), with the exception of only one strain. Toxin profiles were quite different from both qualitative and quantitative standpoints: 67% of the strains contained OVTX-a to -e, OVTX-g, and isobaric PLTX, in 25% of them only OVTX-a, -d, -e and isobaric PLTX were present, while 4% produced only OVTX-b and -c. None of the strains showed a previously identified profile, featuring OVTX-f as dominant toxin, whereas OVTX-f was a minor component of very few strains. Toxin content was mostly in the range 4-70 pg/cell with higher levels (up to 238 pg/cell) being found in strains from the Ligurian and South Adriatic Sea. Structural insights into OVTX-b, -c, -d, and -e were gained, and the new OVTX-l was detected in 36 strains.


Assuntos
Dinoflagelados , Toxinas Marinhas , Cromatografia Líquida , Mar Mediterrâneo , Espectrometria de Massas em Tandem
8.
Mar Genomics ; 36: 49-55, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28625778

RESUMO

Studying taxonomic and ecological diversity of phytoplankton assemblages is often difficult because morphological analysis cannot provide a complete description of their composition. Therefore, more robust and feasible approaches have to be chosen to elucidate the interactions between environmental and human pressures and phytoplankton assemblages. The Ocean Sampling Day (OSD) allowed collecting seawater samples from a wide range of oceanic regions including the Mediterranean Sea. In this study, a total of 754,167 V4-18S ribosomal DNA (rDNA) metabarcodes derived from 20 plankton samples collected at 19 sampling sites across the coastal areas of the Mediterranean Sea were analyzed to explore the relationships between phytoplankton assemblages' composition, sub-regional environmental features and human pressures. We reduced the whole set of autotroph plankton (1398 OTUs) to a smaller number of ecologically relevant entities (205 taxa) and used the latter for analysing the structure of phytoplankton assemblages. Chaetoceros was the only genus occurring in all the samples, while the number of taxa was maximum in the W Mediterranean. Based on the assigned OTUs, the structure of E Mediterranean phytoplankton was the most homogeneous. Further, phytoplankton assemblages from the three Mediterranean sub-regions (Western, Adriatic and Eastern) were significantly different (R=0.25, p=0.0136) based on Jaccard similarity. We also observed that phytoplankton diversity and human impact on marine ecosystems were not significantly related to each other based on Mantel's test.


Assuntos
Biodiversidade , Fitoplâncton/classificação , Fitoplâncton/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Mar Mediterrâneo , Microalgas/classificação , Microalgas/genética , Microalgas/fisiologia , Fitoplâncton/genética , RNA de Algas/genética , RNA Ribossômico 18S/genética
9.
Sci Rep ; 7(1): 4259, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652566

RESUMO

The aim of this study was to develop and validate a high resolution melting (HRM) method for the rapid, accurate identification of the various harmful diatom Pseudo-nitzschia species in marine environments. Pseudo-nitzschia has a worldwide distribution and some species are toxic, producing the potent domoic acid toxin, which poses a threat to both human and animal health. Hence, it is important to identify toxic Pseudo-nitzschia species. A pair of primers targeting the LSU rDNA of the genus Pseudo-nitzschia was designed for the development of the assay and its specificity was validated using 22 control DNAs of the P. calliantha, P. delicatissima/P. arenysensis complex and P. pungens. The post-PCR HRM assay was applied to numerous unidentified Pseudo-nitzschia strains isolated from the northwestern Adriatic Sea (Mediterranean Sea), and it was able to detect and discriminate three distinct Pseudo-nitzschia taxa from unidentified samples. Moreover, the species-specific identification of Pseudo-nitzschia isolates by the HRM assay was consistent with phylogenetic analyses. The HRM assay was specific, robust and rapid when applied to high numbers of cultured samples in order to taxonomically identify Pseudo-nitzschia isolates recovered from environmental samples.


Assuntos
DNA Ribossômico/genética , Diatomáceas/genética , Filogenia , Animais , Diatomáceas/isolamento & purificação , Diatomáceas/patogenicidade , Humanos , Toxinas Marinhas/genética , Toxinas Marinhas/isolamento & purificação , Mar Mediterrâneo , Desnaturação de Ácido Nucleico/genética
10.
Harmful Algae ; 63: 56-67, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366400

RESUMO

In the last few decades, the frequency of the toxic benthic dinoflagellate Ostreopsis cf. ovata proliferation has increased in the Mediterranean Sea. These blooms are associated with harmful effects on human health and the environment. The present work provides the first long term study on the spatio-temporal distribution of O. cf. ovata in relation to physical parameters in the Gulf of Gabès coastal waters (south-eastern Mediterranean Sea), as well as its morphological, molecular and physiological features. The strains of O. cf. ovata were identified morphologically by light and epifluorescence microscopy. The morphology and the size range of cultured strains were similar to those described regarding O. cf. ovata isolated from the Mediterranean Sea. The ultrastructural analysis of O. cf. ovata cells using the transmission electron microscopy showed the presence of numerous vesicles (VE) containing spirally coiled fibers (SCFs) connected to the mucus canal (CH). The phylogenetic tree based on the internal transcribed spacer region containing the 5.8S rDNA (ITS-5.8S rDNA) revealed that O. cf. ovata strains were placed into the Mediterranean/Atlantic clade. In addition, O. cf. ovata toxicity was evaluated by the mouse bioassay and a dose level≥4×104 cells was found to be lethal to mice. The examination of the O. cf. ovata occurrence in the Gulf of Gabès at a large temporal scale (1997-2012) revealed a clear seasonal pattern with dominance from midsummer (July) to late autumn (November). Furthermore, a positive correlation was found between the abundance of O. cf. ovata and salinity, whereas no correlation was found as regards temperature. The occurrence of O. cf. ovata was only detected at salinity above 35 and the highest concentrations were observed at 45. Laboratory experiments confirmed such a result and showed that isolated O. cf. ovata strains had optimal growth at salinity ranging between 35 and 45, with its peak at 40.


Assuntos
Bioensaio/métodos , Dinoflagelados/metabolismo , Animais , DNA Ribossômico/genética , Humanos , Mar Mediterrâneo , Microscopia Eletrônica de Transmissão , Análise Espaço-Temporal
11.
Harmful Algae ; 63: 7-12, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366402

RESUMO

During the past decade, next generation sequencing (NGS) technologies have provided new insights into the diversity, dynamics, and metabolic pathways of natural microbial communities. But, these new techniques face challenges related to the genome size and level of genome complexity of the species under investigation. Moreover, the coverage depth and the short-read length achieved by NGS based approaches also represent a major challenge for assembly. These factors could limit the use of these high-throughput sequencing methods for species lacking a reference genome and characterized by a high level of complexity. In the present work, the evolutionary history, mainly consisting of gene transfer events from bacteria and unicellular eukaryotes to microalgae, including harmful species, is discussed and reviewed as it relates to NGS application in microbial communities, with a particular focus on harmful algal bloom species and dinoflagellates. In the context of genetic population studies, genotyping-by-sequencing (GBS), an NGS based approach, could be used for the discovery and analysis of single nucleotide polymorphisms (SNPs). The NGS technologies are still relatively new and require further improvement. Specifically, there is a need to develop and standardize tools and approaches to handle large data sets, which have to be used for the majority of HAB species characterized by evolutionary highly dynamic genomes.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microalgas/genética , Animais , Genótipo , Humanos , Análise de Sequência de DNA/métodos
12.
J Phycol ; 52(6): 1064-1084, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27633521

RESUMO

The new benthic toxic dinoflagellate, Ostreopsis fattorussoi sp. nov., is described from the Eastern Mediterranean Sea, Lebanon and Cyprus coasts, and is supported by morphological and molecular data. The plate formula, Po, 3', 7″, 6c, 7s, 5‴, 2'''', is typical for the Ostreopsis genus. It differs from all other Ostreopsis species in that (i) the curved suture between plates 1' and 3' makes them approximately hexagonal, (ii) the 1' plate lies in the left half of the epitheca and is obliquely orientated leading to a characteristic shape of plate 6″. The round thecal pores are bigger than the other two Mediterranean species (O. cf. ovata and O. cf. siamensis). O. fattorussoi is among the smallest species of the genus (DV: 60.07 ± 5.63 µm, AP: 25.66 ± 2.97 µm, W: 39.81 ± 5.05 µm) along with O. ovata. Phylogenetic analyses based on the LSU and internal transcribed spacer rDNA shows that O. fattorussoi belongs to the Atlantic/Mediterranean Ostreopsis spp. clade separated from the other Ostreopsis species. Ostreopsis fattorussoi produces OVTX-a and structural isomers OVTX-d and -e, O. cf. ovata is the only other species of this genus known to produce these toxins. The Lebanese O. fattorussoi did not produce the new palytoxin-like compounds (ovatoxin-i, ovatoxin-j1 , ovatoxin-j2 , and ovatoxin-k) that were previously found in O. fattorussoi from Cyprus. The toxin content was in the range of 0.28-0.94 pg · cell-1 . On the Lebanon coast, O. fattorussoi was recorded throughout the year 2015 (temperature range 18°C-31.5°C), with peaks in June and August.


Assuntos
Dinoflagelados/classificação , Chipre , DNA de Algas/genética , Dinoflagelados/genética , Dinoflagelados/ultraestrutura , Líbano , Mar Mediterrâneo , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
13.
Harmful Algae ; 57(Pt A): 49-58, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30170721

RESUMO

The frequency and geographic extension of microalgae and gelatinous zooplankton blooms seem to have been increasing worldwide over recent decades. In particular, the harmful dinoflagellate Ostreopsis cf. ovata and the Schyphozoan jellyfish Aurelia sp. are two of the most frequent and long lasting species forming blooms in the Mediterranean Sea. A kind of interaction among any of their life cycle stages (i.e. planula-polyp-ephyrae vs Ostreopsis cells) can likely occur, although in this area there are no data available on the co-occurrence of these species. The aim of this study was to investigate, for the first time, the potential noxious effect of O. cf. ovata on different life stages of Aurelia sp. (polyps and ephyrae), testing several concentrations of whole algal culture. Rsults of toxicity bioassay highlighted that ephyrae, but not polyps, are affected by this harmful dinoflagellate and comparisons among other model organisms show that Aurelia sp. ephyrae are the most sensitive model organism tested so far (EC50-24h=10.5cells/mL). These findings suggest an interesting scenario on the interaction of these two bloom forming species in the natural marine environment.

14.
Anal Bioanal Chem ; 408(3): 915-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608282

RESUMO

Blooms of benthic dinoflagellates of the genus Ostreopsis (mainly O. cf. ovata and occasionally O. cf. siamensis) represent a serious concern for humans in the Mediterranean area, due to production of palytoxin-like compounds listed among the most potent marine toxins known. In this work, six strains of Ostreopsis sp. from Cyprus Island were analyzed through an integrated approach based on molecular, chemical, and eco-toxicological methods. Cypriot Ostreopsis sp. was found to be a species distinct from O. cf. ovata and O. cf. siamensis, belonging to the Atlantic/Mediterranean Ostreopsis spp. clade. Some variability in toxin profiles emerged: three strains produced ovatoxin-a (OVTX-a), OVTX-d, OVTX-e, and isobaric palytoxin, so far found only in O. cf. ovata; the other three strains produced only new palytoxin-like compounds, which we named ovatoxin-i, ovatoxin-j1, ovatoxin-j2, and ovatoxin-k. The new ovatoxins present the same carbon skeleton as ovatoxin-a, differing primarily in an additional C2H2O2 moiety and an unsaturation in the region C49-C52. Other minor structural differences were found, including the presence of a hydroxyl group at C44 (in OVTX-j1 and OVTX-k) and the lack of a hydroxyl group in the region C53-C78 (in OVTX-i and OVTX-j1). The toxin content of the analyzed Ostreopsis sp. strains was in the range 0.06-2.8 pg cell(-1), definitely lower than that of a Ligurian O. cf. ovata strain cultured under the same conditions. Accordingly, an eco-toxicological test on Artemia salina nauplii demonstrated that Ostreopsis sp. presents a very low toxicity compared to O. cf. ovata. The whole of these data suggest that Ostreopsis sp. from Cyprus Island poses a relatively low risk to humans.


Assuntos
Dinoflagelados/química , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Animais , Artemia/efeitos dos fármacos , Cromatografia Líquida , Dinoflagelados/classificação , Dinoflagelados/metabolismo , Ilhas , Toxinas Marinhas/metabolismo , Espectrometria de Massas , Estrutura Molecular
15.
Environ Sci Technol ; 49(24): 14230-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26580419

RESUMO

Paralytic shellfish poisoning (PSP) is a serious human illness caused by the ingestion of seafood contaminated with saxitoxin and its derivatives (STXs). These toxins are produced by some species of marine dinoflagellates within the genus Alexandrium. In the Mediterranean Sea, toxic Alexandrium spp. blooms, especially of A. minutum, are frequent and intense with negative impact to coastal ecosystem, aquaculture practices and other economic activities. We conducted a large scale study on the sxt gene and toxin distribution and content in toxic dinoflagellate A. minutum of the Mediterranean Sea using both quantitative PCR (qPCR) and HILIC-HRMS techniques. We developed a new qPCR assay for the estimation of the sxtA1 gene copy number in seawater samples during a bloom event in Syracuse Bay (Mediterranean Sea) with an analytical sensitivity of 2.0 × 10° sxtA1 gene copy number per reaction. The linear correlation between sxtA1 gene copy number and microalgal abundance and between the sxtA1 gene and STX content allowed us to rapidly determine the STX-producing cell concentrations of two Alexandrium species in environmental samples. In these samples, the amount of sxtA1 gene was in the range of 1.38 × 10(5) - 2.55 × 10(8) copies/L and the STX concentrations ranged from 41-201 nmol/L. This study described a potential PSP scenario in the Mediterranean Sea.


Assuntos
Dinoflagelados/patogenicidade , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saxitoxina/genética , Intoxicação por Frutos do Mar , Dinoflagelados/genética , Ecossistema , Marcadores Genéticos , Humanos , Mar Mediterrâneo , Microalgas/genética , Saxitoxina/toxicidade , Água do Mar/parasitologia , Intoxicação por Frutos do Mar/parasitologia
16.
Gigascience ; 4: 27, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26097697

RESUMO

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.


Assuntos
Biologia Marinha , Biodiversidade , Sistemas de Gerenciamento de Base de Dados , Metagenômica , Oceanos e Mares
17.
Mar Drugs ; 12(10): 5258-76, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25341029

RESUMO

The dinoflagellate Alexandrium minutum is known for the production of potent neurotoxins affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP). The aim of this study was to investigate the relationship between the toxin content and the expression level of the genes involved in paralytic shellfish toxin (PST) production. The algal cultures were grown both in standard f/2 medium and in phosphorus/nitrogen limitation. In our study, LC-HRMS analyses of PST profile and content in different Mediterranean A. minutum strains confirmed that this species was able to synthesize mainly the saxitoxin analogues Gonyautoxin-1 (GTX1) and Gonyautoxin-4 (GTX4). The average cellular toxin content varied among different strains, and between growth phases, highlighting a decreasing trend from exponential to stationary phase in all culture conditions tested. The absolute quantities of intracellular sxtA1 and sxtG mRNA were not correlated with the amount of intracellular toxins in the analysed A. minutum suggesting that the production of toxins may be regulated by post-transcriptional mechanisms and/or by the concerted actions of alternative genes belonging to the PST biosynthesis gene cluster. Therefore, it is likely that the sxtA1 and sxtG gene expression could not reflect the PST accumulation in the Mediterranean A. minutum populations under the examined standard and nutrient limiting conditions.


Assuntos
Dinoflagelados/genética , Expressão Gênica/genética , Saxitoxina/análogos & derivados , Saxitoxina/genética , Dinoflagelados/metabolismo , Família Multigênica/genética , Neurotoxinas/genética , Neurotoxinas/metabolismo , RNA Mensageiro/genética , Saxitoxina/metabolismo , Intoxicação por Frutos do Mar/genética , Intoxicação por Frutos do Mar/metabolismo
18.
Mar Pollut Bull ; 88(1-2): 102-9, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25282181

RESUMO

Ostreopsis sp. is a toxic marine benthic dinoflagellate that causes high biomass blooms, posing a threat to human health, marine biota and aquaculture activities, and negatively impacting coastal seawater quality. Species-specific identification and enumeration is fundamental because it can allow the implementation of all the necessary preventive measures to properly manage Ostreopsis spp. bloom events in recreational waters and aquaculture farms. The aim of this study was to apply a rapid and sensitive qPCR method to quantify Ostreopsis cf. ovata abundance in environmental samples collected from Mediterranean coastal sites and to develop site-specific environmental standard curves. Similar PCR efficiencies of plasmid and environmental standard curves allowed us to estimate the LSU rDNA copy number per cell. Moreover, we assessed the effectiveness of mitochondrial COI and cob genes as alternative molecular markers to ribosomal genes in qPCR assays for Ostreopsis spp. quantification.


Assuntos
Dinoflagelados/genética , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Água do Mar/análise , DNA Ribossômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dosagem de Genes , Proliferação Nociva de Algas , Humanos , Limite de Detecção , Toxinas Marinhas/genética , Região do Mediterrâneo , Plasmídeos , Proteínas de Protozoários/genética , Recreação , Água do Mar/parasitologia , Qualidade da Água
19.
Environ Sci Technol ; 48(6): 3532-40, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24564517

RESUMO

Since the late 1990s, a respiratory syndrome has been repetitively observed in humans concomitant with Ostreopsis spp. blooms (mainly O. cf. ovata) in the Mediterranean area. Previous studies have demonstrated that O. cf. ovata produces analogues of palytoxin (ovatoxins and a putative palytoxin), one of the most potent marine toxins. On the basis of the observed association between O. cf. ovata blooms, respiratory illness in people, and detection of palytoxin complex in algal samples, toxic aerosols, containing Ostreopsis cells and/or the toxins they produce, were postulated to be the cause of human illness. A small scale monitoring study of marine aerosol carried out along the Tuscan coasts (Italy) in 2009 and 2010 is reported. Aerosols were collected concomitantly with O. cf. ovata blooms, and they were analyzed by both PCR assays and LC-HRMS. The results, besides confirming the presence of O. cf. ovata cells, demonstrated for the first time the occurrence of ovatoxins in the aerosol at levels of 2.4 pg of ovatoxins per liter of air. Given the lack of toxicological data on palytoxins by inhalation exposure, our results are only a first step toward a more comprehensive understanding of the Ostreopsis-related respiratory syndrome.


Assuntos
Dinoflagelados/química , Monitoramento Ambiental/métodos , Toxinas Marinhas/análise , Acrilamidas/análise , Acrilamidas/química , Aerossóis/análise , Venenos de Cnidários , Dinoflagelados/genética , Dinoflagelados/isolamento & purificação , Itália , Biologia Marinha , Toxinas Marinhas/química , Água do Mar
20.
Appl Biochem Biotechnol ; 170(7): 1624-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23712793

RESUMO

Microalgae are one of the most promising biodiesel feedstocks due to their efficiency in CO2 fixation and high neutral lipid productivity. Nutrient-stress conditions, including nitrogen starvation, enhance neutral lipid content, but at the same time lead to a reduction of biomass. To maximize lipid production in the diatom Skeletonema marinoi, we investigated two different nitrogen starvation approaches. In the first experimental approach, inocula were effectuated in modified f/2 media with decreasing nitrogen concentration, while in the second experiment, nitrate concentration was gradually reduced through a collection/resuspension system in which the culture was periodically collected and resuspended in culture medium with a lower nitrate concentration. In the first approach, the neutral lipid accumulation was accompanied by a strong biomass reduction, as was expected, whereas the second experiment generated cultures with significantly higher neutral lipid content without affecting biomass production. The total proteins and total carbohydrates, which were also quantified in both experiments, suggest that in S. marinoi, neutral lipid accumulation during nutrient starvation did not derive from a new carbon partition of accumulated carbohydrates.


Assuntos
Reatores Biológicos/microbiologia , Diatomáceas/fisiologia , Metabolismo dos Lipídeos/fisiologia , Nitratos/metabolismo , Nitrogênio/metabolismo , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA