Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 24(21): 23849-23862, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828220

RESUMO

Optical feedback interferometry (OFI) performance for microscale-flow sensing is studied theoretically and experimentally. A new numerical modeling approach for OFI flow meter spectrum reproduction is presented in this work to study the optical effect on the signal due to the micro-scale channel geometry. Two well-defined frequency peaks are found in the OFI spectrum, this phenomenon can be attributed to the reflection of the forward scattered light on the channel rear interface. The flow rate measurement shows good accuracy over a range of fluid velocities from 16.8 mm/s to 168 mm/s, thus providing a promising tool to study and to optimize the OFI microfluidic sensor system.

2.
Sensors (Basel) ; 16(8)2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527178

RESUMO

Optical feedback interferometry (OFI) is a compact sensing technique with recent implementation for flow measurements in microchannels. We propose implementing OFI for the analysis at the microscale of multiphase flows starting with the case of parallel flows of two immiscible fluids. The velocity profiles in each phase were measured and the interface location estimated for several operating conditions. To the authors knowledge, this sensing technique is applied here for the first time to multiphase flows. Theoretical profiles issued from a model based on the Couette viscous flow approximation reproduce fairly well the experimental results. The sensing system and the analysis presented here provide a new tool for studying more complex interactions between immiscible fluids (such as liquid droplets flowing in a microchannel).

3.
Sensors (Basel) ; 16(5)2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27187406

RESUMO

Optical feedback interferometry (OFI) sensors are experiencing a consistent increase in their applications to biosensing due to their contactless nature, low cost and compactness, features that fit very well with current biophotonics research and market trends. The present paper is a review of the work in progress at UPC-CD6 and LAAS-CNRS related to the application of OFI to different aspects of biosensing, both in vivo and ex vivo. This work is intended to present the variety of opportunities and potential applications related to OFI that are available in the field. The activities presented are divided into two main sensing strategies: The measurement of optical path changes and the monitoring of flows, which correspond to sensing strategies linked to the reconstruction of changes of amplitude from the interferometric signal, and to classical Doppler frequency measurements, respectively. For optical path change measurements, measurements of transient pulses, usual in biosensing, together with the measurement of large displacements applied to designing palliative care instrumentation for Parkinson disease are discussed. Regarding the Doppler-based approach, progress in flow-related signal processing and applications in real-time monitoring of non-steady flows, human blood flow monitoring and OFI pressure myograph sensing will be presented. In all cases, experimental setups are discussed and results presented, showing the versatility of the technique. The described applications show the wide capabilities in biosensing of the OFI sensor, showing it as an enabler of low-cost, all-optical, high accuracy biomedical applications.


Assuntos
Técnicas Biossensoriais , Dispositivos Ópticos , Retroalimentação Sensorial , Humanos , Interferometria , Processamento de Sinais Assistido por Computador
4.
Appl Opt ; 54(2): 312-8, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967631

RESUMO

We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

5.
Appl Opt ; 53(17): 3723-36, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24921138

RESUMO

Self-mixing laser sensors show promise for a wide range of sensing applications, including displacement, velocimetry, and fluid flow measurements. Several techniques have been developed to simulate self-mixing signals; however, a complete and succinct process for synthesizing self-mixing signals has so far been absent in the open literature. This article provides a systematic numerical approach for the analysis of self-mixing sensors using the steady-state solution to the Lang and Kobayashi model. Examples are given to show how this method can be used to synthesize self-mixing signals for arbitrary feedback levels and for displacement, distance, and velocity measurement. We examine these applications with a deterministic stimulus and discuss the velocity measurement of a rough surface, which necessitates the inclusion of a random stimulus.

6.
Opt Lett ; 39(2): 394-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562155

RESUMO

We compare the performance of a self-mixing (SM) sensing system based on an uncooled monolithic array of 24×1 vertical-cavity surface-emitting lasers (VCSELs) in two modes of operation: single active channel and the concurrent multichannel operation. We find that the signal-to-noise ratio of individual SM sensors in a VCSEL array is markedly improved by multichannel operation, as a consequence of the increased operational temperature of the sensors. The performance improvement can be further increased by manufacturing VCSEL arrays with smaller pitch. This has the potential to produce an imaging system with high spatial and temporal resolutions that can be operated without temperature stabilization.

7.
Opt Express ; 22(24): 30346-56, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606963

RESUMO

This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.


Assuntos
Acústica , Retroalimentação , Imageamento Tridimensional , Interferometria , Fenômenos Ópticos , Processamento de Sinais Assistido por Computador , Ultrassom
8.
Opt Lett ; 37(18): 3771-3, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041854

RESUMO

In this Letter, we experimentally show that transient phenomenons in self-mixing signals from a moving target contain information about the target reflectivity and distance. These transient phenomenons are well explained with a dynamical model of the laser diode, which is used to trace an abacus giving the target reflectivity and distance from a measured high-bandwidth, self-mixing signal.

9.
Opt Lett ; 36(18): 3690-2, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21931434

RESUMO

We demonstrate a method for maintaining the maximum signal-to-noise ratio (SNR) of the signal obtained from the self-mixing sensor based on a vertical-cavity surface-emitting laser (VCSEL). It was found that the locus of the maximum SNR in the current-temperature space can be well approximated by a simple analytical model related to the temperature behavior of the VCSEL threshold current. The optimum sensor performance is achieved by tuning the laser current according to the proposed model, thus enabling the sensor to operate without temperature stabilization in a wide temperature range between -20 °C and +80 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA