Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanoscale ; 12(3): 2047-2056, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31912844

RESUMO

Defect engineering is important for tailoring the electronic and optical properties of two-dimensional materials, and the capability of generating defects of certain types at specific locations is meaningful for potential applications such as optoelectronics and quantum photonics. In this work, atomic defects are created in single-layer WSe2 using focused ion beam (FIB) irradiation, with defect densities spanning many orders of magnitude. The influences of defects are systematically characterized. Raman spectroscopy can only discern defects in WSe2 for a FIB dose higher than 1 × 1013 cm-2, which causes blue shifts of both A'1 and E' modes. Photoluminescence (PL) of WSe2 is more sensitive to defects. At cryogenic temperature, the low-energy PL induced by defects can be revealed, which shows redshifts and broadenings with increased FIB doses. Similar Raman shifts and PL spectrum changes are observed for the WSe2 film grown by chemical vapor deposition (CVD). A four microsecond-long lifetime is observed in the PL dynamics and is three orders of magnitude longer than the often observed delocalized exciton lifetime and becomes more dominant for WSe2 with increasing FIB doses. The ultra-long lifetime of PL in single-layer WSe2 is consistent with first-principles calculation results considering the creation of both chalcogen and metal vacancies by FIB, and can be valuable for photo-catalytic reactions, valleytronics and quantum light emissions owing to the longer carrier separation/manipulation time.

3.
Nano Lett ; 18(3): 1651-1659, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29464959

RESUMO

Atomic-defect engineering in thin membranes provides opportunities for ionic and molecular filtration and analysis. While molecular-dynamics (MD) calculations have been used to model conductance through atomic vacancies, corresponding experiments are lacking. We create sub-nanometer vacancies in suspended single-layer molybdenum disulfide (MoS2) via Ga+ ion irradiation, producing membranes containing ∼300 to 1200 pores with average and maximum diameters of ∼0.5 and ∼1 nm, respectively. Vacancies exhibit missing Mo and S atoms, as shown by aberration-corrected scanning transmission electron microscopy (AC-STEM). The longitudinal acoustic band and defect-related photoluminescence were observed in Raman and photoluminescence spectroscopy, respectively. As the irradiation dose is increased, the median vacancy area remains roughly constant, while the number of vacancies (pores) increases. Ionic current versus voltage is nonlinear and conductance is comparable to that of ∼1 nm diameter single MoS2 pores, proving that the smaller pores in the distribution display negligible conductance. Consistently, MD simulations show that pores with diameters <0.6 nm are almost impermeable to ionic flow. Atomic pore structure and geometry, studied by AC-STEM, are critical in the sub-nanometer regime in which the pores are not circular and the diameter is not well-defined. This study lays the foundation for future experiments to probe transport in large distributions of angstrom-size pores.


Assuntos
Dissulfetos/química , Molibdênio/química , Nanoporos/ultraestrutura , Filtração/instrumentação , Transporte de Íons , Membranas Artificiais , Simulação de Dinâmica Molecular , Nanotecnologia/instrumentação , Porosidade
4.
ACS Nano ; 11(7): 6746-6754, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28686413

RESUMO

The development of scalable and reliable techniques for the production of the atomically thin layers of graphene and hexagonal boron nitride (h-BN) in bulk quantities could make these materials a powerful platform for devices and composites that impact a wide variety of technologies (Nature 2012, 490, 192-200). To date a number of practical exfoliation methods have been reported that are based on sonicating or stirring powdered graphite or h-BN in common solvents. However, the products of these experiments consist mainly of few-layer sheets and contain only a small fraction of monolayers. A possible reason for this is that splitting the crystals into monolayers starts from solvent intercalation, which must overcome the substantial interlayer cohesive energy (120-720 mJ/m2) of the van der Waals solids. Here we show that the yield of the atomically thin layers can be increased to near unity when stage-1 intercalation compounds of phosphoric acid are used as starting materials. The exfoliation to predominantly monolayers was achieved by stirring them in medium polarity organic solvents that can form hydrogen bonds. The exfoliation process does not disrupt the sp2 π-system of graphene and is gentle enough to allow the preparation of graphene and h-BN monolayers that are tens of microns in their lateral dimensions.

5.
ACS Nano ; 11(5): 5103-5112, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28471652

RESUMO

Large-area (∼cm2) films of vertical heterostructures formed by alternating graphene and transition-metal dichalcogenide (TMD) alloys are obtained by wet chemical routes followed by a thermal treatment at low temperature. In particular, we synthesized stacked graphene and WxMo1-xS2 alloy phases that were used as hydrogen evolution catalysts. We observed a Tafel slope of 38.7 mV dec-1 and 96 mV onset potential (at current density of 10 mA cm-2) when the heterostructure alloy was annealed at 300 °C. These results indicate that heterostructures formed by graphene and W0.4Mo0.6S2 alloys are far more efficient than WS2 and MoS2 by at least a factor of 2, and they are superior compared to other reported TMD systems. This strategy offers a cheap and low temperature synthesis alternative able to replace Pt in the hydrogen evolution reaction (HER). Furthermore, the catalytic activity of the alloy is stable over time, i.e., the catalytic activity does not experience a significant change even after 1000 cycles. Using density functional theory calculations, we found that this enhanced hydrogen evolution in the WxMo1-xS2 alloys is mainly due to the lower energy barrier created by a favorable overlap of the d-orbitals from the transition metals and the s-orbitals of H2; with the lowest energy barrier occurring for the W0.4Mo0.6S2 alloy. Thus, it is now possible to further improve the performance of the "inert" TMD basal plane via metal alloying, in addition to the previously reported strategies such as creation of point defects, vacancies and edges. The synthesis of graphene/W0.4Mo0.6S2 produced at relatively low temperatures is scalable and could be used as an effective low cost Pt-free catalyst.

6.
Sci Adv ; 3(4): e1602813, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508048

RESUMO

Defects play a significant role in tailoring the optical properties of two-dimensional materials. Optical signatures of defect-bound excitons are important tools to probe defective regions and thus interrogate the optical quality of as-grown semiconducting monolayer materials. We have performed a systematic study of defect-bound excitons using photoluminescence (PL) spectroscopy combined with atomically resolved scanning electron microscopy and first-principles calculations. Spatially resolved PL spectroscopy at low temperatures revealed bound excitons that were present only on the edges of monolayer tungsten disulfide and not in the interior. Optical pumping of the bound excitons was sublinear, confirming their bound nature. Atomic-resolution images reveal that the areal density of monosulfur vacancies is much larger near the edges (0.92 ± 0.45 nm-2) than in the interior (0.33 ± 0.11 nm-2). Temperature-dependent PL measurements found a thermal activation energy of ~36 meV; surprisingly, this is much smaller than the bound-exciton binding energy of ~300 meV. We show that this apparent inconsistency is related to a thermal dissociation of the bound exciton that liberates the neutral excitons from negatively charged point defects. First-principles calculations confirm that sulfur monovacancies introduce midgap states that host optical transitions with finite matrix elements, with emission energies ranging from 200 to 400 meV below the neutral-exciton emission line. These results demonstrate that bound-exciton emission induced by monosulfur vacancies is concentrated near the edges of as-grown monolayer tungsten disulfide.

7.
Sci Adv ; 2(10): e1601026, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27730213

RESUMO

Viral infectious diseases can erupt unpredictably, spread rapidly, and ravage mass populations. Although established methods, such as polymerase chain reaction, virus isolation, and next-generation sequencing have been used to detect viruses, field samples with low virus count pose major challenges in virus surveillance and discovery. We report a unique carbon nanotube size-tunable enrichment microdevice (CNT-STEM) that efficiently enriches and concentrates viruses collected from field samples. The channel sidewall in the microdevice was made by growing arrays of vertically aligned nitrogen-doped multiwalled CNTs, where the intertubular distance between CNTs could be engineered in the range of 17 to 325 nm to accurately match the size of different viruses. The CNT-STEM significantly improves detection limits and virus isolation rates by at least 100 times. Using this device, we successfully identified an emerging avian influenza virus strain [A/duck/PA/02099/2012(H11N9)] and a novel virus strain (IBDV/turkey/PA/00924/14). Our unique method demonstrates the early detection of emerging viruses and the discovery of new viruses directly from field samples, thus creating a universal platform for effectively remediating viral infectious diseases.


Assuntos
Técnicas Biossensoriais/métodos , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/diagnóstico , Nanotubos de Carbono/química , Animais , Perus
8.
Sci Adv ; 2(7): e1600322, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27532043

RESUMO

As a novel and efficient surface analysis technique, graphene-enhanced Raman scattering (GERS) has attracted increasing research attention in recent years. In particular, chemically doped graphene exhibits improved GERS effects when compared with pristine graphene for certain dyes, and it can be used to efficiently detect trace amounts of molecules. However, the GERS mechanism remains an open question. We present a comprehensive study on the GERS effect of pristine graphene and nitrogen-doped graphene. By controlling nitrogen doping, the Fermi level (E F) of graphene shifts, and if this shift aligns with the lowest unoccupied molecular orbital (LUMO) of a molecule, charge transfer is enhanced, thus significantly amplifying the molecule's vibrational Raman modes. We confirmed these findings using different organic fluorescent molecules: rhodamine B, crystal violet, and methylene blue. The Raman signals from these dye molecules can be detected even for concentrations as low as 10(-11) M, thus providing outstanding molecular sensing capabilities. To explain our results, these nitrogen-doped graphene-molecule systems were modeled using dispersion-corrected density functional theory. Furthermore, we demonstrated that it is possible to determine the gaps between the highest occupied and the lowest unoccupied molecular orbitals (HOMO-LUMO) of different molecules when different laser excitations are used. Our simulated Raman spectra of the molecules also suggest that the measured Raman shifts come from the dyes that have an extra electron. This work demonstrates that nitrogen-doped graphene has enormous potential as a substrate when detecting low concentrations of molecules and could also allow for an effective identification of their HOMO-LUMO gaps.


Assuntos
Grafite/química , Nitrogênio/química , Violeta Genciana/análise , Limite de Detecção , Azul de Metileno/análise , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Teoria Quântica , Rodaminas/análise , Espectrofotometria Ultravioleta , Análise Espectral Raman
9.
ACS Nano ; 10(5): 5006-14, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27082162

RESUMO

Directed assembly of two-dimensional (2D) layered materials, such as transition metal dichalcogenides, holds great promise for large-scale electronic and optoelectronic applications. Here, we demonstrate controlled placement of solution-suspended monolayer tungsten disulfide (WS2) sheets on a substrate using electric-field-assisted assembly. Micrometer-sized triangular WS2 monolayers are selectively positioned on a lithographically defined interdigitated guiding electrode structure using the dielectrophoretic force induced on the sheets in a nonuniform field. Triangular sheets with sizes comparable to the interelectrode gap assemble with an observed preferential orientation where one side of the triangle spans across the electrode gap. This orientation of the sheets relative to the guiding electrode is confirmed to be the lowest energy configuration using semianalytical calculations. Nearly all sheets assemble without observable physical deformation, and postassembly photoluminescence and Raman spectroscopy characterization of the monolayers reveal that they retain their as-grown crystalline quality. These results show that the field-assisted assembly process may be used for large-area bottom-up integration of 2D monolayer materials for nanodevice applications.

10.
Proc Natl Acad Sci U S A ; 112(47): 14527-32, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26575621

RESUMO

Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.

11.
ACS Nano ; 9(12): 11658-66, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26502824

RESUMO

Chemical vapor deposition (CVD) is a scalable method able to synthesize MoS2 and WS2 monolayers. In this work, we reduced the synthesis temperature by 200 °C only by introducing tellurium (Te) into the CVD process. The as-synthesized MoS2 and WS2 monolayers show high phase purity and crystallinity. The optical and electrical performance of these materials is comparable to those synthesized at higher temperatures. We believe this work will accelerate the industrial synthesis of these semiconducting monolayers.

12.
Adv Mater ; 26(45): 7593-9, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25355604

RESUMO

Large-area Si-doped graphene (SiG) is controllably synthesized for the first time. A much-enhanced molecular-sensing performance is achieved when SiG is used as a probing surface. This will open up opportunities for developing high-performance sensors that are able to detect trace amounts of organic and fluorescent molecules. Furthermore, many fascinating properties predicted by theoretical calculations can be tested based on the as-synthesized SiG.

13.
ACS Nano ; 8(10): 10214-22, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25299482

RESUMO

Applications of carbon nanotubes continue to advance, with substantial progress in nanotube electronics, conductive wires, and transparent conductors to name a few. However, wider application remains impeded by a lack of control over production of nanotubes with the desired purity, perfection, chirality, and number of walls. This is partly due to the fact that growth experiments are time-consuming, taking about 1 day per run, thus making it challenging to adequately explore the many parameters involved in growth. We endeavored to speed up the research process by automating CVD growth experimentation. The adaptive rapid experimentation and in situ spectroscopy CVD system described in this contribution conducts over 100 experiments in a single day, with automated control and in situ Raman characterization. Linear regression modeling was used to map regions of selectivity toward single-wall and multiwall carbon nanotube growth in the complex parameter space of the water-assisted CVD synthesis. This development of the automated rapid serial experimentation is a significant progress toward an autonomous closed-loop learning system: a Robot Scientist.

14.
Nat Commun ; 5: 4867, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25202857

RESUMO

Dislocations have a significant effect on mechanical, electronic, magnetic and optical properties of crystals. For a dislocation to migrate in bulk crystals, collective and simultaneous movement of several atoms is needed. In two-dimensional crystals, in contrast, dislocations occur on the surface and can exhibit unique migration dynamics. Dislocation migration has recently been studied in graphene, but no studies have been reported on dislocation dynamics for two-dimensional transition metal dichalcogenides with unique metal-ligand bonding and a three-atom thickness. This study presents dislocation motion, glide and climb, leading to grain boundary migration in a tungsten disulphide monolayer. Direct atomic-scale imaging coupled with atomistic simulations reveals a strikingly low-energy barrier for glide, leading to significant grain boundary reconstruction in tungsten disulphide. The observed dynamics are unique and different from those reported for graphene. Through strain field mapping, we also demonstrate how dislocations introduce considerable strain along the grain boundaries and at the dislocation cores.

15.
Sci Rep ; 4: 5530, 2014 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-24984953

RESUMO

We investigate Second Harmonic Generation (SHG) in monolayer WS2 both deposited on a SiO2/Si substrate or suspended using transmission electron microscopy grids. We find unusually large second order nonlinear susceptibility, with an estimated value of d(eff) ~ 4.5 nm/V nearly three orders of magnitude larger than other common nonlinear crystals. In order to quantitatively characterize the nonlinear susceptibility of two-dimensional (2D) materials, we have developed a formalism to model SHG based on the Green's function with a 2D nonlinear sheet source. In addition, polarized SHG is demonstrated as a useful method to probe the structural symmetry and crystal orientation of 2D materials. To understand the large second order nonlinear susceptibility of monolayer WS2, density functional theory based calculation is performed. Our analysis suggests the origin of the large nonlinear susceptibility in resonance enhancement and a large joint density of states, and yields an estimate of the nonlinear susceptibility value d(eff) = 0.77 nm/V for monolayer WS2, which shows good order-of-magnitude agreement with the experimental result.

16.
ACS Nano ; 8(6): 5959-67, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24796818

RESUMO

Graphene oxide (GO) has recently become an attractive building block for fabricating graphene-based functional materials. GO films and fibers have been prepared mainly by vacuum filtration and wet spinning. These materials exhibit relatively high Young's moduli but low toughness and a high tendency to tear or break. Here, we report an alternative method, using bar coating and drying of water/GO dispersions, for preparing large-area GO thin films (e.g., 800-1200 cm(2) or larger) with an outstanding mechanical behavior and excellent tear resistance. These dried films were subsequently scrolled to prepare GO fibers with extremely large elongation to fracture (up to 76%), high toughness (up to 17 J/m(3)), and attractive macroscopic properties, such as uniform circular cross section, smooth surface, and great knotability. This method is simple, and after thermal reduction of the GO material, it can render highly electrically conducting graphene-based fibers with values up to 416 S/cm at room temperature. In this context, GO fibers annealed at 2000 °C were also successfully used as electron field emitters operating at low turn on voltages of ca. 0.48 V/µm and high current densities (5.3 A/cm(2)). Robust GO fibers and large-area films with fascinating architectures and outstanding mechanical and electrical properties were prepared with bar coating followed by dry film scrolling.

17.
ACS Nano ; 8(4): 3715-23, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24641706

RESUMO

The stacking of two-dimensional layered materials, such as semiconducting transition metal dichalcogenides (TMDs), insulating hexagonal boron nitride (hBN), and semimetallic graphene, has been theorized to produce tunable electronic and optoelectronic properties. Here we demonstrate the direct growth of MoS2, WSe2, and hBN on epitaxial graphene to form large-area van der Waals heterostructures. We reveal that the properties of the underlying graphene dictate properties of the heterostructures, where strain, wrinkling, and defects on the surface of graphene act as nucleation centers for lateral growth of the overlayer. Additionally, we show that the direct synthesis of TMDs on epitaxial graphene exhibits atomically sharp interfaces. Finally, we demonstrate that direct growth of MoS2 on epitaxial graphene can lead to a 10(3) improvement in photoresponse compared to MoS2 alone.

18.
Opt Lett ; 39(2): 383-5, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562152

RESUMO

We demonstrate the application of two-dimensional materials for ultrashort optical pulse characterization. Monolayer transition metal dichalcogenides, such as tungsten disulfide (WS2), possess extraordinarily large second-order nonlinear susceptibility, and due to their atomic thickness, have relaxed phase-matching requirements and, hence, an inherently wide bandwidth. Synthesized monolayer WS2 triangular islands were used to characterize ultrashort optical pulses at the focal point of an objective lens through second-harmonic generation collinear frequency-resolved optical gating.

19.
ACS Nano ; 7(12): 10788-98, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24187970

RESUMO

We report the preparation of hybrid paperlike films consisting of alternating layers of graphene (or graphene oxide) and different types of multiwalled carbon nanotubes (N-doped MWNTs, B-doped MWNTs, and pristine MWNTs). We used an efficient self-assembly method in which nanotubes were functionalized with cationic polyelectrolytes in order to make them dispersible in water, and subsequently these suspensions were mixed with graphene oxide (GO) suspensions, and the films were formed by casting/evaporation processes. The electronic properties of these films (as produced and thermally reduced) were characterized, and we found electrical resistivities as low as 3 × 10(-4) Ω cm. Furthermore, we observed that these films could be used as electron field emission sources with extraordinary efficiencies; threshold electric field of ca. 0.55 V/µm, ß factor as high as of 15.19 × 10(3), and operating currents up to 220 µA. These values are significantly enhanced when compared to previous reports in the literature for other carbon nanostructured filmlike materials. We believe these hybrid foils could find other applications as scaffolds for tissue regeneration, thermal and conducting papers, and laminate composites with epoxy resins.

20.
ACS Nano ; 7(6): 5235-42, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23647141

RESUMO

The isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-area (~1 cm(2)) WS2 sheets with thicknesses ranging from monolayers to a few layers. During synthesis, WOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures (750-950 °C). An efficient route to transfer the synthesized WS2 films onto different substrates such as quartz and transmission electron microscopy (TEM) grids has been satisfactorily developed using concentrated HF. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered WS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layers, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This method has also proved successful in the synthesis of heterogeneous systems of MoS2 and WS2 layers, thus shedding light on the controlled production of heterolayered devices from transition metal chalcogenides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA