Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Am J Hum Genet ; 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31679650

RESUMO

Cytokines are essential regulatory components of the immune system, and their aberrant levels have been linked to many disease states. Despite increasing evidence that cytokines operate in concert, many of the physiological interactions between cytokines, and the shared genetic architecture that underlies them, remain unknown. Here, we aimed to identify and characterize genetic variants with pleiotropic effects on cytokines. Using three population-based cohorts (n = 9,263), we performed multivariate genome-wide association studies (GWAS) for a correlation network of 11 circulating cytokines, then combined our results in meta-analysis. We identified a total of eight loci significantly associated with the cytokine network, of which two (PDGFRB and ABO) had not been detected previously. In addition, conditional analyses revealed a further four secondary signals at three known cytokine loci. Integration, through the use of Bayesian colocalization analysis, of publicly available GWAS summary statistics with the cytokine network associations revealed shared causal variants between the eight cytokine loci and other traits; in particular, cytokine network variants at the ABO, SERPINE2, and ZFPM2 loci showed pleiotropic effects on the production of immune-related proteins, on metabolic traits such as lipoprotein and lipid levels, on blood-cell-related traits such as platelet count, and on disease traits such as coronary artery disease and type 2 diabetes.

2.
Diabetologia ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584131

RESUMO

AIMS/HYPOTHESIS: Metabolomics technologies have identified numerous blood biomarkers for type 2 diabetes risk in case-control studies of middle-aged and older individuals. We aimed to validate existing and identify novel metabolic biomarkers predictive of future diabetes in large cohorts of young adults. METHODS: NMR metabolomics was used to quantify 229 circulating metabolic measures in 11,896 individuals from four Finnish observational cohorts (baseline age 24-45 years). Associations between baseline metabolites and risk of developing diabetes during 8-15 years of follow-up (392 incident cases) were adjusted for sex, age, BMI and fasting glucose. Prospective metabolite associations were also tested with fasting glucose, 2 h glucose and HOMA-IR at follow-up. RESULTS: Out of 229 metabolic measures, 113 were associated with incident type 2 diabetes in meta-analysis of the four cohorts (ORs per 1 SD: 0.59-1.50; p< 0.0009). Among the strongest biomarkers of diabetes risk were branched-chain and aromatic amino acids (OR 1.31-1.33) and triacylglycerol within VLDL particles (OR 1.33-1.50), as well as linoleic n-6 fatty acid (OR 0.75) and non-esterified cholesterol in large HDL particles (OR 0.59). The metabolic biomarkers were more strongly associated with deterioration in post-load glucose and insulin resistance than with future fasting hyperglycaemia. A multi-metabolite score comprised of phenylalanine, non-esterified cholesterol in large HDL and the ratio of cholesteryl ester to total lipid in large VLDL was associated with future diabetes risk (OR 10.1 comparing individuals in upper vs lower fifth of the multi-metabolite score) in one of the cohorts (mean age 31 years). CONCLUSIONS/INTERPRETATION: Metabolic biomarkers across multiple molecular pathways are already predictive of the long-term risk of diabetes in young adults. Comprehensive metabolic profiling may help to target preventive interventions for young asymptomatic individuals at increased risk.

3.
PLoS One ; 14(10): e0223692, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31644575

RESUMO

BACKGROUND: GlycA is a nuclear magnetic resonance (NMR) spectroscopy biomarker that predicts risk of disease from myriad causes. It is heterogeneous; arising from five circulating glycoproteins with dynamic concentrations: alpha-1 antitrypsin (AAT), alpha-1-acid glycoprotein (AGP), haptoglobin (HP), transferrin (TF), and alpha-1-antichymotrypsin (AACT). The contributions of each glycoprotein to the disease and mortality risks predicted by GlycA remain unknown. METHODS: We trained imputation models for AAT, AGP, HP, and TF from NMR metabolite measurements in 626 adults from a population cohort with matched NMR and immunoassay data. Levels of AAT, AGP, and HP were estimated in 11,861 adults from two population cohorts with eight years of follow-up, then each biomarker was tested for association with all common endpoints. Whole blood gene expression data was used to identify cellular processes associated with elevated AAT. RESULTS: Accurate imputation models were obtained for AAT, AGP, and HP but not for TF. While AGP had the strongest correlation with GlycA, our analysis revealed variation in imputed AAT levels was the most predictive of morbidity and mortality for the widest range of diseases over the eight year follow-up period, including heart failure (meta-analysis hazard ratio = 1.60 per standard deviation increase of AAT, P-value = 1×10-10), influenza and pneumonia (HR = 1.37, P = 6×10-10), and liver diseases (HR = 1.81, P = 1×10-6). Transcriptional analyses revealed association of elevated AAT with diverse inflammatory immune pathways. CONCLUSIONS: This study clarifies the molecular underpinnings of the GlycA biomarker's associated disease risk, and indicates a previously unrecognised association between elevated AAT and severe disease onset and mortality.

4.
Nat Commun ; 10(1): 3346, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31431621

RESUMO

Predicting longer-term mortality risk requires collection of clinical data, which is often cumbersome. Therefore, we use a well-standardized metabolomics platform to identify metabolic predictors of long-term mortality in the circulation of 44,168 individuals (age at baseline 18-109), of whom 5512 died during follow-up. We apply a stepwise (forward-backward) procedure based on meta-analysis results and identify 14 circulating biomarkers independently associating with all-cause mortality. Overall, these associations are similar in men and women and across different age strata. We subsequently show that the prediction accuracy of 5- and 10-year mortality based on a model containing the identified biomarkers and sex (C-statistic = 0.837 and 0.830, respectively) is better than that of a model containing conventional risk factors for mortality (C-statistic = 0.772 and 0.790, respectively). The use of the identified metabolic profile as a predictor of mortality or surrogate endpoint in clinical studies needs further investigation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31255807

RESUMO

Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are the major causes for nonviral liver cirrhosis in the population. Whereas the typical NAFLD patient is one with abdominal obesity, metabolic syndrome (MetS), and no or minimal alcohol use, the patient with pure alcoholic liver cirrhosis has, according to cohort studies, typically consumed >5-10 daily alcohol drinks for several years.1 However, both alcohol use and components of the MetS are continuous variables and, as such, not dichotomic. Recent evidence suggests harmful synergistic effects of obesity, MetS, and alcohol intake for the risk of future liver disease.2 Consequently, given an increasing population prevalence of overweight and obese alcohol users, expectedly, there will be many patients that do not fit either the typical NAFLD or typical ALD phenotype, but share features of both disease entities. Current case-finding strategies focusing on either pure NAFLD or pure ALD3,4 may underestimate the true risk in individuals who will develop liver disease as the result of interaction between alcohol and metabolic disorders.1.

6.
BMJ ; 366: l4292, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345923

RESUMO

OBJECTIVE: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes. DESIGN: Individual participant data meta-analysis. DATA SOURCES: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators. REVIEW METHODS: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score. RESULTS: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I2=7.1%, τ2=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I2=18.0%, τ2=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I2=58.8%, τ2=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I2=25.9%, τ2=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed. CONCLUSIONS: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Adulto , Alelos , Diabetes Mellitus Tipo 2/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Fatores de Risco
7.
Hepatology ; 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31323122

RESUMO

BACKGROUND AND AIMS: The effects of alcohol use in nonalcoholic fatty liver disease are unclear. We investigated the impact of alcohol use in fatty liver disease on incident liver, cardiovascular, and malignant disease, as well as death. APPROACH AND RESULTS: Our study comprised 8,345 persons with hepatic steatosis (fatty liver index >60) who participated in health-examination surveys (FINRISK 1992-2012 or Health 2000), with available data on baseline alcohol intake. Main exclusions were baseline clinical liver disease, viral hepatitis, ethanol intake >50 g/day, and current abstainers. Data were linked with national registers for hospital admissions, malignancies, and death regarding liver, cardiovascular, and malignant disease, as well as all-cause death. Adjustment were for multiple confounders. Alcohol consumption showed a dose-dependent risk increase for incident advanced liver disease and malignancies. Consuming 10-19 g/day of alcohol in general or 0-9 g/day as nonwine beverages doubled the risk for advanced liver disease compared to lifetime abstainers. In contrast, alcohol intake up to 49 g/day was associated with a 22%-40% reduction of incident cardiovascular disease (CVD). We observed a J-shaped association between alcohol intake and all-cause death with a maximal risk reduction of 21% (95% confidence interval, 5%-34%) at alcohol intake of 0-9 g/day compared to lifetime abstainers. However, these benefits on CVD and mortality were only observed in never smokers. Alcohol intake >30 g/day yielded increased risk estimates for mortality compared to lifetime abstainers. In a subpopulation with longitudinal data, alcohol intake remained stable over time in >80% of subjects. CONCLUSIONS: Even low alcohol intake in fatty liver disease is associated with increased risks for advanced liver disease and cancer. Low to moderate alcohol use is associated with reduced mortality and CVD risk but only among never smokers.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31260143

RESUMO

BACKGROUND AND AIM: Liver disease is traditionally categorized as alcoholic and non-alcoholic. We studied various risk factors predictive of advanced non-viral liver disease in general population and analyzed the interaction between these factors and alcohol consumption. METHODS: Persons without underlying liver disease who participated in the Health2000 or FINRISK studies 1992-2012 comprised a cohort of 41 260 individuals. Pattern of alcohol consumption and metabolic, lifestyle-related, and anthropometric parameters were analyzed with Cox regression analysis using severe liver disease hospitalization, cancer, or death as end-point. Viral liver diseases were excluded. RESULTS: A total of 355 liver events occurred during the mean 12.4-year follow-up (511 789 person-years). In the multivariate model, age (hazard ratio [HR] 1.03, P = 0.0083 for men; HR 1.04, P = 0.0198 for women), waist-to-hip ratio (WHR) (HR 1.52, P = 0.0006 for men; HR 1.58, P = 0.0167 for women), patatin-like phospholipase-containing domain 3 mutations (HR 1.9, P = 0.024 for men; HR 2.7, P = 0.0109 for women), and weekly binge drinking (HR 2.4, P = 0.0024 for men; HR 7.4, P < 0.0001 for women) predicted development of severe liver disease. Among men, diabetes (HR 2.7, P = 0.0002), average alcohol consumption (HR for 10 g/day 1.1, P = 0.0022), non-married status (HR 1.9, P = 0.0397 for single; HR 2.4, P = 0.0002 for widowed/separated), and serum high-density lipoprotein (HR 2.2, P = 0.0022) and non-high-density lipoprotein cholesterol (HR 1.2, P = 0.0237) were additional risk factors. Alcohol intake increased the risk especially among persons with high WHR (P for interaction 0.009). CONCLUSIONS: Age, patatin-like phospholipase-containing domain 3 haplotype, and WHR increase the risk for development of severe liver disease. We found strong synergism between alcohol and central obesity. Binge drinking is an additional risk factor.

9.
J Med Genet ; 56(9): 607-616, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31217265

RESUMO

BACKGROUND: Inflammatory processes contribute to the pathophysiology of multiple chronic conditions. Genetic factors play a crucial role in modulating the inflammatory load, but the exact mechanisms are incompletely understood. OBJECTIVE: To assess genetic determinants of 16 circulating cytokines and cell adhesion molecules (inflammatory phenotypes) in Finns. METHODS: Genome-wide associations of the inflammatory phenotypes were studied in Northern Finland Birth Cohort 1966 (N=5284). A subsequent meta-analysis was completed for 10 phenotypes available in a previous genome-wide association study, adding up to 13 577 individuals in the study. Complementary association tests were performed to study the effect of the ABO blood types on soluble adhesion molecule levels. RESULTS: We identified seven novel and six previously reported genetic associations (p<3.1×10-9). Three loci were associated with soluble vascular cell adhesion molecule-1 (sVCAM-1) level, one of which was the ABO locus that has been previously associated with soluble E-selectin (sE-selectin) and intercellular adhesion molecule-1 (sICAM-1) levels. Our findings suggest that the blood type B associates primarily with sVCAM-1 level, while the A1 subtype shows a robust effect on sE-selectin and sICAM-1 levels. The genotypes in the ABO locus associating with higher soluble adhesion molecule levels tend to associate with lower circulating cholesterol levels and lower cardiovascular disease risk. CONCLUSION: The present results extend the knowledge about genetic factors contributing to the inflammatory load. Our findings suggest that two distinct mechanisms contribute to the soluble adhesion molecule levels in the ABO locus and that elevated soluble adhesion molecule levels per se may not increase risk for cardiovascular disease.

10.
Am J Clin Nutr ; 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31161197

RESUMO

BACKGROUND: Food neophobia is considered a behavioral trait closely linked to adverse eating patterns and reduced dietary quality, which have been associated with increased risk of obesity and noncommunicable diseases. OBJECTIVES: In a cross-sectional and prospective study, we examined how food neophobia is associated with dietary quality, health-related biomarkers, and disease outcome incidence in Finnish and Estonian adult populations. METHODS: The study was conducted based on subsamples of the Finnish DIetary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome (DILGOM) cohort (n = 2982; age range: 25-74 y) and the Estonian Biobank cohort (n = 1109; age range: 18-83 y). The level of food neophobia was assessed using the Food Neophobia Scale, dietary quality was evaluated using the Baltic Sea Diet Score (BSDS), and biomarker profiles were determined using an NMR metabolomics platform. Disease outcome information was gathered from national health registries. Follow-up data on the NMR-based metabolomic profiles and disease outcomes were available in both populations. RESULTS: Food neophobia associated significantly (adjusted P < 0.05) with health-related biomarkers [e.g., ω-3 (n-3) fatty acids, citrate, α1-acid glycoprotein, HDL, and MUFA] in the Finnish DILGOM cohort. The significant negative association between the severity of food neophobia and ω-3 fatty acids was replicated in all cross-sectional analyses in the Finnish DILGOM and Estonian Biobank cohorts. Furthermore, food neophobia was associated with reduced dietary quality (BSDS: ß: -0.03 ± 0.006; P = 8.04 × 10-5), increased fasting serum insulin (ß: 0.004 ± 0.0013; P = 5.83 × 10-3), and increased risk of type 2 diabetes during the ∼8-y follow-up (HR: 1.018 ± 0.007; P = 0.01) in the DILGOM cohort. CONCLUSIONS: In the Finnish and Estonian adult populations, food neophobia was associated with adverse alteration of health-related biomarkers and risk factors that have been associated with an increased risk of noncommunicable diseases. We also found that food neophobia associations with ω-3 fatty acids and associated metabolites are mediated through dietary quality independent of body weight.

11.
Am J Hum Genet ; 104(6): 1169-1181, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31155286

RESUMO

Polygenic scores (PSs) are becoming a useful tool to identify individuals with high genetic risk for complex diseases, and several projects are currently testing their utility for translational applications. It is also tempting to use PSs to assess whether genetic variation can explain a part of the geographic distribution of a phenotype. However, it is not well known how the population genetic properties of the training and target samples affect the geographic distribution of PSs. Here, we evaluate geographic differences, and related biases, of PSs in Finland in a geographically well-defined sample of 2,376 individuals from the National FINRISK study. First, we detect geographic differences in PSs for coronary artery disease (CAD), rheumatoid arthritis, schizophrenia, waist-hip ratio (WHR), body-mass index (BMI), and height, but not for Crohn disease or ulcerative colitis. Second, we use height as a model trait to thoroughly assess the possible population genetic biases in PSs and apply similar approaches to the other phenotypes. Most importantly, we detect suspiciously large accumulations of geographic differences for CAD, WHR, BMI, and height, suggesting bias arising from the population's genetic structure rather than from a direct genotype-phenotype association. This work demonstrates how sensitive the geographic patterns of current PSs are for small biases even within relatively homogeneous populations and provides simple tools to identify such biases. A thorough understanding of the effects of population genetic structure on PSs is essential for translational applications of PSs.

12.
BMC Cancer ; 19(1): 628, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238897

RESUMO

BACKGROUND: A major barrier to effective treatment of glioblastoma (GBM) is the large intertumoral heterogeneity at the genetic and cellular level. In early phase clinical trials, patient heterogeneity in response to therapy is commonly observed; however, how tumor heterogeneity is reflected in individual drug sensitivities in the treatment-naïve glioblastoma stem cells (GSC) is unclear. METHODS: We cultured 12 patient-derived primary GBMs as tumorspheres and validated tumor stem cell properties by functional assays. Using automated high-throughput screening (HTS), we evaluated sensitivity to 461 anticancer drugs in a collection covering most FDA-approved anticancer drugs and investigational compounds with a broad range of molecular targets. Statistical analyses were performed using one-way ANOVA and Spearman correlation. RESULTS: Although tumor stem cell properties were confirmed in GSC cultures, their in vitro and in vivo morphology and behavior displayed considerable tumor-to-tumor variability. Drug screening revealed significant differences in the sensitivity to anticancer drugs (p < 0.0001). The patient-specific vulnerabilities to anticancer drugs displayed a heterogeneous pattern. They represented a variety of mechanistic drug classes, including apoptotic modulators, conventional chemotherapies, and inhibitors of histone deacetylases, heat shock proteins, proteasomes and different kinases. However, the individual GSC cultures displayed high biological consistency in drug sensitivity patterns within a class of drugs. An independent laboratory confirmed individual drug responses. CONCLUSIONS: This study demonstrates that patient-derived and treatment-naïve GSC cultures maintain patient-specific traits and display intertumoral heterogeneity in drug sensitivity to anticancer drugs. The heterogeneity in patient-specific drug responses highlights the difficulty in applying targeted treatment strategies at the population level to GBM patients. However, HTS can be applied to uncover patient-specific drug sensitivities for functional precision medicine.

13.
Endocrinology ; 160(7): 1731-1742, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125048

RESUMO

Most patients with pancreatic cancer present with advanced disease and die within the first year after diagnosis. Predictive biomarkers that signal the presence of pancreatic cancer in an early stage are desperately needed. We aimed to identify new and validate previously found plasma metabolomic biomarkers associated with early stages of pancreatic cancer. Prediagnostic blood samples from individuals who were to receive a diagnosis of pancreatic cancer between 1 month and 17 years after sampling (N = 356) and age- and sex-matched controls (N = 887) were collected from five large population cohorts (HUNT2, HUNT3, FINRISK, Estonian Biobank, Rotterdam Study). We applied proton nuclear magnetic resonance-based metabolomics on the Nightingale platform. Logistic regression identified two interesting hits: glutamine (P = 0.011) and histidine (P = 0.012), with Westfall-Young family-wise error rate adjusted P values of 0.43 for both. Stratification in quintiles showed a 1.5-fold elevated risk for the lowest 20% of glutamine and a 2.2-fold increased risk for the lowest 20% of histidine. Stratification by time to diagnosis suggested glutamine to be involved in an earlier process (2 to 5 years before diagnosis), and histidine in a process closer to the actual onset (<2 years). Our data did not support the branched-chain amino acids identified earlier in several US cohorts as potential biomarkers for pancreatic cancer. Thus, although we identified glutamine and histidine as potential biomarkers of biological interest, our results imply that a study at this scale does not yield metabolomic biomarkers with sufficient predictive value to be clinically useful per se as prognostic biomarkers.

14.
J Am Heart Assoc ; 8(10): e011922, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31070104

RESUMO

Background Recent studies have revealed sexually dimorphic associations between the carbamoyl-phosphate synthase 1 locus, intermediates of the metabolic pathway leading from choline to urea, and risk of coronary artery disease ( CAD ) in women. Based on evidence from the literature, the atheroprotective association with carbamoyl-phosphate synthase 1 could be mediated by the strong genetic effect of this locus on increased circulating glycine levels. Methods and Results We sought to identify additional genetic determinants of circulating glycine levels by carrying out a meta-analysis of genome-wide association study data in up to 30 118 subjects of European ancestry. Mendelian randomization and other analytical approaches were used to determine whether glycine-associated variants were associated with CAD and traditional risk factors. Twelve loci were significantly associated with circulating glycine levels, 7 of which were not previously known to be involved in glycine metabolism ( ACADM , PHGDH , COX 18- ADAMTS 3, PSPH , TRIB 1, PTPRD , and ABO ). Glycine-raising alleles at several loci individually exhibited directionally consistent associations with decreased risk of CAD . However, these effects could not be attributed directly to glycine because of associations with other CAD -related traits. By comparison, genetic models that only included the 2 variants directly involved in glycine degradation and for which there were no other pleiotropic associations were not associated with risk of CAD or blood pressure, lipid levels, and obesity-related traits. Conclusions These results provide additional insight into the genetic architecture of glycine metabolism, but do not yield conclusive evidence for a causal relationship between circulating levels of this amino acid and risk of CAD in humans.

15.
Front Immunol ; 10: 907, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134054

RESUMO

Exercise and exercise-induced weight loss have a beneficial effect on overall health, including positive effects on molecular pathways associated with immune function, especially in overweight individuals. The main aim of our study was to assess how energy deprivation (i.e., "semi-starvation") leading to substantial fat mass loss affects the immune system and immunosuppression in previously normal weight individuals. Thus, to address this hypothesis, we applied a high-throughput systems biology approach to better characterize potential key pathways associated with immune system modulation during intensive weight loss and subsequent weight regain. We examined 42 healthy female physique athletes (age 27.5 ± 4.0 years, body mass index 23.4 ± 1.7 kg/m2) volunteered into either a diet group (n = 25) or a control group (n = 17). For the diet group, the energy intake was reduced and exercise levels were increased to induce loss of fat mass that was subsequently regained during a recovery period. The control group was instructed to maintain their typical lifestyle, exercise levels, and energy intake at a constant level. For quantification of systems biology markers, fasting blood samples were drawn at three time points: baseline (PRE), at the end of the weight loss period (MID 21.1 ± 3.1 weeks after PRE), and at the end of the weight regain period (POST 18.4 ± 2.9 weeks after MID). In contrast to the control group, the diet group showed significant (false discovery rate <0.05) alteration of all measured immune function parameters-white blood cells (WBCs), immunoglobulin G glycome, leukocyte transcriptome, and cytokine profile. Integrative omics suggested effects on multiple levels of immune system as dysregulated hematopoiesis, suppressed immune cell proliferation, attenuated systemic inflammation, and loss of immune cell function by reduced antibody and chemokine secretion was implied after intense weight loss. During the weight regain period, the majority of the measured immune system parameters returned back to the baseline. In summary, this study elucidated a number of molecular pathways presumably explaining immunosuppression in individuals going through prolonged periods of intense training with low-energy availability. Our findings also reinforce the perception that the way in which weight loss is achieved (i.e., dietary restriction, exercise, or both) has a distinct effect on how the immune system is modulated.

16.
Med Sci Sports Exerc ; 51(9): 1866-1875, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30973481

RESUMO

INTRODUCTION: Arising evidence suggests that resistance training has the potential to induce beneficial modulation of biomarker profile. To date, however, only immediate responses to resistance training have been investigated using high-throughput metabolomics whereas the effects of chronic resistance training on biomarker profile have not been studied in detail. METHODS: A total of 86 recreationally active healthy men without previous systematic resistance training background were allocated into (i) a resistance training (RT) group (n = 68; age, 33 ± 7 yr; body mass index, 28 ± 3 kg·m) and (ii) a non-RT group (n = 18; age, 31 ± 4 yr; body mass index, 27 ± 3 kg·m). Blood samples were collected at baseline (PRE), after 4 wk (POST-4wk), and after 16 wk of resistance training intervention (POST-16wk), as well as baseline and after the non-RT period (20-24 wk). Nuclear magnetic resonance-metabolome platform was used to determine metabolomic responses to chronic resistance training. RESULTS: Overall, the resistance training intervention resulted in favorable alterations (P < 0.05) in body composition with increased levels of lean mass (~2.8%), decreased levels of android (~9.6%), and total fat mass (~7.5%). These changes in body composition were accompanied by antiatherogenic alterations in serum metabolome profile (false discovery rate < 0.05) as reductions in non-high-density lipoprotein cholesterol (e.g., free cholesterol, remnant cholesterol, intermediate-density lipoprotein cholesterols, low-density lipoprotein cholesterols) and related apolipoprotein B, and increments in conjugated linoleic fatty acids levels were observed. Individuals with the poorest baseline status (i.e., body composition, metabolome profile) benefitted the most from the resistance training intervention. CONCLUSIONS: In conclusion, resistance training improves cardiometabolic risk factors and serum metabolome even in previously healthy young men. Thus, suggesting attenuated risk for future cardiovascular disease.

17.
Clin Chem ; 65(8): 1042-1050, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30996052

RESUMO

BACKGROUND: HDL-mediated cholesterol efflux capacity (HDL-CEC) is a functional attribute that may have a protective role in atherogenesis. However, the estimation of HDL-CEC is based on in vitro cell assays that are laborious and hamper large-scale phenotyping. METHODS: Here, we present a cost-effective high-throughput nuclear magnetic resonance (NMR) spectroscopy method to estimate HDL-CEC directly from serum. We applied the new method in a population-based study of 7603 individuals including 574 who developed incident coronary heart disease (CHD) during 15 years of follow-up, making this the largest quantitative study for HDL-CEC. RESULTS: As estimated by NMR-spectroscopy, a 1-SD higher HDL-CEC was associated with a lower risk of incident CHD (hazards ratio, 0.86; 95%CI, 0.79-0.93, adjusted for traditional risk factors and HDL-C). These findings are consistent with published associations based on in vitro cell assays. CONCLUSIONS: These corroborative large-scale findings provide further support for a potential protective role of HDL-CEC in CHD and substantiate this new method and its future applications.

18.
Stat Appl Genet Mol Biol ; 18(2)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875332

RESUMO

A way to enhance our understanding of the development and progression of complex diseases is to investigate the influence of cellular environments on gene co-expression (i.e. gene-pair correlations). Often, changes in gene co-expression are investigated across two or more biological conditions defined by categorizing a continuous covariate. However, the selection of arbitrary cut-off points may have an influence on the results of an analysis. To address this issue, we use a general linear model (GLM) for correlated data to study the relationship between gene-module co-expression and a covariate like metabolite concentration. The GLM specifies the gene-pair correlations as a function of the continuous covariate. The use of the GLM allows for investigating different (linear and non-linear) patterns of co-expression. Furthermore, the modeling approach offers a formal framework for testing hypotheses about possible patterns of co-expression. In our paper, a simulation study is used to assess the performance of the GLM. The performance is compared with that of a previously proposed GLM that utilizes categorized covariates. The versatility of the model is illustrated by using a real-life example. We discuss the theoretical issues related to the construction of the test statistics and the computational challenges related to fitting of the proposed model.

19.
Sci Rep ; 9(1): 1193, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718923

RESUMO

Short sleep duration or insomnia may lead to an increased risk of various psychiatric and cardio-metabolic conditions. Since DNA methylation plays a critical role in the regulation of gene expression, studies of differentially methylated positions (DMPs) might be valuable for understanding the mechanisms underlying insomnia. We performed a cross-sectional genome-wide analysis of DNA methylation in relation to self-reported insufficient sleep in individuals from a community-based sample (79 men, aged 39.3 ± 7.3), and in relation to shift work disorder in an occupational cohort (26 men, aged 44.9 ± 9.0). The analysis of DNA methylation data revealed that genes corresponding to selected DMPs form a distinctive pathway: "Nervous System Development" (FDR P value < 0.05). We found that 78% of the DMPs were hypomethylated in cases in both cohorts, suggesting that insufficient sleep may be associated with loss of DNA methylation. A karyoplot revealed clusters of DMPs at various chromosomal regions, including 12 DMPs on chromosome 17, previously associated with Smith-Magenis syndrome, a rare condition comprising disturbed sleep and inverse circadian rhythm. Our findings give novel insights into the DNA methylation patterns associated with sleep loss, possibly modifying processes related to neuroplasticity and neurodegeneration. Future prospective studies are needed to confirm the observed associations.

20.
Circulation ; 138(22): 2499-2512, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30524137

RESUMO

Background: Both statins and PCSK9 inhibitors lower blood low-density lipoprotein cholesterol (LDL-C) levels to reduce risk of cardiovascular events. To assess potential differences between metabolic effects of these two lipid-lowering therapies, we performed detailed lipid and metabolite profiling of a large randomized statin trial and compared the results with the effects of genetic inhibition of PCSK9, acting as a naturally occurring trial. Methods: 228 circulating metabolic measures were quantified by nuclear magnetic resonance spectroscopy, including lipoprotein subclass concentrations and their lipid composition, fatty acids, and amino acids, for 5,359 individuals (2,659 on treatment) in the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER) trial at 6-months post-randomization. The corresponding metabolic measures were analyzed in eight population cohorts (N=72,185) using PCSK9 rs11591147 as an unconfounded proxy to mimic the therapeutic effects of PCSK9 inhibitors. Results: Scaled to an equivalent lowering of LDL-C, the effects of genetic inhibition of PCSK9 on 228 metabolic markers were generally consistent with those of statin therapy (R 2=0.88). Alterations in lipoprotein lipid composition and fatty acid distribution were similar. However, discrepancies were observed for very-low-density lipoprotein (VLDL) lipid measures. For instance, genetic inhibition of PCSK9 had weaker effects on lowering of VLDL-cholesterol compared with statin therapy (54% vs. 77% reduction, relative to the lowering effect on LDL-C; P=2x10-7 for heterogeneity). Genetic inhibition of PCSK9 showed no significant effects on amino acids, ketones, or a marker of inflammation (GlycA) whereas statin treatment weakly lowered GlycA levels. Conclusions: Genetic inhibition of PCSK9 had similar metabolic effects to statin therapy on detailed lipid and metabolite profiles. However, PCSK9 inhibitors are predicted to have weaker effects on VLDL lipids compared with statins for an equivalent lowering of LDL-C, which potentially translate into smaller reductions in cardiovascular disease risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA