Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 108: 110421, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923969

RESUMO

Phytochemicals sources have been extensively used as reducing and capping agents for synthesis of nanoparticles (NPs). However, morphology-controlled synthesis and shape/size dependent applications of these NPs still need to be explored further, and there is a need to develop a way in which particular and optimized phytochemicals result in the desired NPs in lesser time and cost with higher reproducibility rate. The present study is focused on morphology-controlled synthesis and shape/size dependent application of silver NPs based on the fractionated phytochemicals of Elaeagnus umbellata extract (EU). Unlike other approaches, in this study the reaction parameters such as time, temperature, pH, stirring speed and concentration of the precursor solutions were not altered during the optimization process. The fractionated phytochemicals were used separately for the synthesis of AgNPs, and the synthesized NPs were characterized by UV-visible, FT-IR, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Our findings suggested that the constituents of the extract fractions varied with the selection of the extraction solvent, and the shape/size, bactericidal properties and toxicity of the NPs have a strong correlation with the phytochemicals of the plant extract. The fractionated phytochemicals present in the water fractions (EUW) resulted in monodispersed spherical AgNPs in the size about 40 nm. The NPs have significant stability in physiological conditions (i.e. temperature, pH and salt), have good antibacterial activity, and were found to be non-toxic. Furthermore, AFM and SEM analysis exposed that the NPs killed the bacteria by disturbing the cellular morphology and releasing the cellular matrix. Our results justify the use of different fractions of plant extract to obtain detail implications on shape, size, antibacterial potential and toxicity of AgNPs. This is the first step in a controllable, easy and cheap approach for the synthesis of highly stable, uniform, non-toxic and bactericidal AgNPs using five fractions of EU. The findings suggested that the synthesized NPs, particularly from EUW, could be used in pharmaceutical and homeopathic industry for the development of antibacterial medications.

2.
J Water Health ; 17(5): 762-776, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638027

RESUMO

Disinfection is intended to improve drinking water quality and human health. Although disinfectants may transform organic matter and form disinfection by-products (DBPs), many are branded as cyto- and genotoxic. Traditionally, research focuses on the effects of DBPs on human health, but cytogenic impacts on aquatic organisms still remain ill defined. The current study examines the potential toxic effect of chloroform and iodoform (DBPs) on Cyprinus carpio, selected as a model organism. Fish specimens were exposed to various concentrations of DBPs primarily based on LD50 values, where acute toxicity was monitored for 96 h. Headspace SPME extraction through gas chromatography was employed to assess the effects of spiked DBPs doses in fish blood. Cytotoxicity was monitored using Comet assay. Tail length, tail DNA, and olive tail moment values were quantified to be significant (P < 0.05) as compared to control. A statistically significant (P < 0.05) decrease in all blood parameters (hematology) was observed. Changes in biochemical indices (glucose, total protein, and alanine aminotransferase (ALT)) were also significant. ALT secretion was significantly increased (93 ± 0.05 and 82.8 ± 0.1 U/L) at higher concentration compared to control (56 ± 0.1 U/L), suggesting liver damage. Results demonstrated that iodoform was statistically more damaging as compared to chloroform.


Assuntos
Carpas/fisiologia , Desinfetantes/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Dano ao DNA , Desinfecção , Hematologia , Humanos
3.
Mater Sci Eng C Mater Biol Appl ; 105: 110111, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546392

RESUMO

Multiple drug resistant (MDR) has become a major issue in developing countries. MDR bacterial infections lead to significant increase in morbidity, mortality and cost of prolonged treatments. Therefore, designing of strategies for improving the antimicrobial potential of the therapeutic agents are highly required. Metal organic frameworks (MOFs) are highly tunable hybrid material, consist of metal ions linked together by organic bridging ligands have been used as an efficient drug delivery carrier because of their biodegradability, low toxicity and structure integrity upon loading and functionalizing process. Current study was based on the synthesis of chitosan coated MOFs with enhanced contact with S. aureus cell surface. Chitosan is deacetylated derivative of chitin and capable for non-bonding interaction with negatively charged bacterial cell leading to enhanced contact of MOFs with S. aureus. Chitosan coated MOFs were characterized with various techniques such as atomic force microscopy, scanning electron microscopy, DLS, FT-IR, TGA, DSC and Powder X-ray diffraction. They were also studied for their efficacy on resistant S. aureus, results revealed that Vancomycin bactericidal activity significantly increased upon loading in chitosan coated MOFs and caused increased inhibition of resistant S. aureus. AFM analysis of S. aureus strains clearly revealed complete distortion of morphology by treating with chitosan modified drug loaded MOFs. Findings of the current study suggest the potential of chitosan coated MOFs for reversing bacterial resistance against Vancomycin and provide new perspectives for improved antibiotic therapy of infections associated with MDR.


Assuntos
Antibacterianos/farmacologia , Quitosana/síntese química , Materiais Revestidos Biocompatíveis/síntese química , Farmacorresistência Bacteriana/efeitos dos fármacos , Estruturas Metalorgânicas/síntese química , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia , Varredura Diferencial de Calorimetria , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície , Termogravimetria , Difração de Raios X
4.
Int. microbiol ; 22(2): 239-246, jun. 2019. ilus, graf, tab
Artigo em Inglês | IBECS | ID: ibc-184830

RESUMO

Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations


No disponible


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Nanopartículas Metálicas , Prata/farmacologia , Fluconazol/farmacologia , Nistatina/farmacologia , Aspergillus/ultraestrutura , Candida albicans/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície/efeitos dos fármacos
5.
Int Microbiol ; 22(2): 239-246, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30810990

RESUMO

Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 µg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.


Assuntos
Antifúngicos/farmacologia , Aspergillus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Sinergismo Farmacológico , Fluconazol/farmacologia , Nanopartículas Metálicas , Nistatina/farmacologia , Prata/farmacologia , Aspergillus/ultraestrutura , Candida albicans/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Propriedades de Superfície/efeitos dos fármacos
6.
Micron ; 110: 73-78, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29772475

RESUMO

E. coli strain is a gram-negative bacterium known to induce both extra-intestinal infections and intestinal infections. For survival of microbes, metal intake and accessibility should be according to their physiological requirements. Peculiarly, copper homeostasis is critical for E. coli survival and growth. Therefore in this study, an extensive work is conducted to investigate the impact of Cu(II)-doping on the susceptibility of Escherichia coli ATCC 10536 against Cu(II)-selective Cefaclor-silver nanoconjugates (i.e., Cf-AgNPs) and its organic precursor (i.e. Cefaclor). At first, the maximal non-cytotoxic dose of Cu(II) that was sub-lethal for Escherichia coli was determined by MTT assay and was found to be 100 µg/L. Afterwards, MICs of Cf-AgNPs and Cefaclor against controlled and Cu(II)-doped E. coli cells were determined by using Agar well diffusion method. The susceptibility of E. coli cells against Cf-AgNPs was increased upon Cu(II) doping, whereas the bactericidal activity of Cefaclor against Cu(II)-doped E. coli cells was retarded due to hydrolysis. In addition, morphological changes induced in controlled and Cu(II)-doped samples of E. coli after treatment with Cefaclor and Cf-AgNPs were also monitored by Atomic force microscopy (AFM). The obtained results from both Agar well diffusion method and AFM confirmed that Cf-AgNPs are more effective against Cu(II)-doped Escherichia coli. Moreover, thermal profile of Cu(II)-selective Cf-AgNPs was also demonstrated by TGA and DSC. This study can be an important part of the relevant state-of-the-art. Indeed, further clinical studies are necessary to determine the relevant role of Cf-AgNPs compared with that of the Cefaclor now available.

7.
J Nanobiotechnology ; 16(1): 6, 2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378569

RESUMO

BACKGROUND: Gold nanoparticles are useful candidate for drug delivery applications and are associated with enhancement in the bioavailability of coated drugs and/or therapeutic agent. Since, heterocyclic compounds are known to exhibit antimicrobial potential against variety of pathogens, we designed this study to evaluate the antibacterial effects of gold nanoparticles conjugation with new synthesized cationic ligand; 4-Dimethyl aminopyridinium propylthioacetate (DMAP-PTA) in comparison with pure compound and antibiotic drug Pefloxacin. Antibacterial activity of DMAP-PTA coated gold nanoparticles was investigated against a fecal strain of E. coli (ATCC 8739). RESULTS: A new dimethyl aminopyridine based stabilizing agent named as DMAP-PTA was synthesized and used for stabilization of gold nanoparticles. Gold nanoparticles coated with DMAP-PTA abbreviated as DMAP-PTA-AuNPs were thoroughly characterized by UV-visible, FT-IR spectroscopic methods and transmission electron microscope before biological assay. DMAP-PTA, DMAP-PTA-AuNPs and Pefloxacin were examined for their antibacterial potential against E. coli, and the minimum inhibitory concentration (MIC) was determined to be 300, 200 and 50 µg/mL respectively. Gold nanoparticles conjugation was found to significantly enhance the antibacterial activity of DMAP-PTA as compared to pure compound. Moreover, effects of DMAP-PTA-AuNPs on the antibacterial potential of Pefloxacin was also evaluated by combination therapy of 1:1 mixture of DMAP-PTA-AuNPs and Pefloxacin against E. coli in a wide range of concentrations from 5 to 300 µg/mL. The MIC of Pefloxacin + DMAP-PTA-AuNPs mixture was found to be 25 µg/mL as compared to Pefloxacin alone (50 µg/mL), which clearly indicates that DMAP-PTA-AuNPs increased the potency of Pefloxacin. AFM analysis was also carried out to show morphological changes occur in bacteria before and after treatment of test samples. Furthermore, DMAP-PTA-AuNPs showed high selectivity towards Pefloxacin in spectrophotometric drug recognition studies which offers tremendous potential for analytical applications. CONCLUSIONS: Gold nanoparticles conjugation was shown to enhance the antibacterial efficacy of DMAP-PTA ligand, while DMAP-PTA-AuNPs also induced synergistic effects on the potency of Pefloxacin against E. coli. DMAP-PTA-AuNPs were also developed as Pefloxacin probes in recognizing the drug in blood and water samples in the presence of other drugs.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/síntese química , Ouro/química , Nanopartículas Metálicas/química , Fenômenos Físicos , Piridinas/síntese química , Compostos de Sulfidrila/síntese química , Materiais Revestidos Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Ligantes , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Pefloxacina/sangue , Piridinas/química , Espectrofotometria Ultravioleta , Compostos de Sulfidrila/química
8.
Ecotoxicol Environ Saf ; 147: 9-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28822261

RESUMO

Solution based method for the formation of chemically modified silver nanoparticles (CX-AgNPs) using Cefixime as stabilizing and reducing agent was developed. The CX-AgNPs were characterized by AFM, UV-visible, FT-IR and MALDI-TOF MS. Bactericidal efficiency of CX-AgNPs and Cefixime against Streptococcus pyogenes was evaluated. Afterwards, susceptibility differences of Streptococcus pyogenes due to accumulation of Hg(II) against CX-AgNPs and Cefixime were estimated and validated through Atomic force microscopy. Selectivity and sensitivity of CX-AgNPs against Hg(II) was evaluated in a systematic manner. The CX-AgNPs was titrated against optically silent Hg(II) which induced enhancement in the SPR band of CX-AgNPs. The increase in intensity of SPR band of CX-AgNPs was determined to be proportionate to the concentration of Hg(II) in the range of 33.3-700µM obeying linear regression equation of y = 0.125x + 8.962 with the detection limit of 0.10µM and the coefficient of determination equals to 0.985 (n = 3). The association constant Ka of CX-AgNPs-Hg(II) was found to be 386.0095mol-1dm3 by using the Benesi Hildebrand plot.


Assuntos
Antibacterianos/farmacologia , Cefixima/farmacologia , Mercúrio/metabolismo , Nanopartículas Metálicas/química , Nanoconjugados/química , Prata/farmacologia , Streptococcus pyogenes/efeitos dos fármacos , Antibacterianos/química , Cefixima/química , Limite de Detecção , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Streptococcus pyogenes/metabolismo
9.
Ecotoxicol Environ Saf ; 147: 49-54, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28826030

RESUMO

In this study a new calix[4]arene triazole 5 was successfully synthesized using click reaction and characterized through UV-visible, FT-IR, 1H NMR spectroscopes and Mass Spectrometry. The supramolecular interaction of compound 5 towards commonly used drugs has been carried out using UV-Visible spectroscopy. The supramolecule 5 showed characteristic enhancement in the absorbance intensity after mixing with Cefuroxime at pH (2-12). Compound 5 displayed considerably good interactions with cefuroxime in the presence of other drugs. Compound 5 exhibits linear relationship with cefuroxime concentration in the range of (10-80µM) with regression value of 0.9954. The standard deviation for 50µM Cefuroxime was found to be 0.01 and the limit of detection for cefuroxime was calculated to be 2µM. Job's plot experiments showed 1:1 (5: cefuroxime) binding stoichiometry between compound 5 and cefuroxime. Supramolecule 5 displayed fairly good spectrophotometric recognition of Cefuroxime in human blood plasma and tap water thus showing that the ingredients of tap water and plasma sample was inert in the recognition of cefuroxime.


Assuntos
Calixarenos/química , Cefuroxima/sangue , Água Potável/química , Fenóis/química , Triazóis/síntese química , Poluentes Químicos da Água/sangue , Cefuroxima/análise , Humanos , Técnicas In Vitro , Limite de Detecção , Espectroscopia de Ressonância Magnética , Plasma/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazóis/química , Poluentes Químicos da Água/análise
10.
Carbohydr Polym ; 174: 243-252, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821064

RESUMO

Gold nanoparticles (AuNPs) have attracted greater scientific interests for the construction of drugs loading cargos due to their biocompatibility, safety and facile surface modifications. This study deals with the fabrication of gum tragacanth (GT) green AuNPs as carrier for Naringin, a less water soluble therapeutic molecule. The optimized AuNPs were characterized through UV-vis spectroscopy, FT-IR and atomic force microscope (AFM). Naringin loaded nanoparticles were investigated for their bactericidal potentials using Tetrazolium Microplate assay. Morphological studies conducted via AFM revealed spherical shape for AuNPs with nano-range size and stabilized by GT multi-functional groups. The AuNPs acted as carrier for increased amount of Naringin. Upon loading in AuNPs, Naringin An increased in the bactericidal potentials of Naringin was observed after loading on AuNPs against various tested bacterial strains. This was further authenticated by the surface morphological analysis, showing enhanced membrane destabilizing effects of loaded Naringin. The results suggest that GT stabilized green AuNPs can act as effective delivery vehicles for enhancing bactericidal potentials of Naringin.

11.
Pak J Pharm Sci ; 30(1): 187-194, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28603130

RESUMO

The human digestive tract contains some 100 trillion cells and thousands of species of micro-organisms may be present as normal flora of this tract as well as other mucocutaneous junctions of the body. Candida specie is the most common organism residing in these areas and can easily invade the internal tissues in cases of loss of host defenses. Modifications of previously existing antifungal agents may provide new options to fight against these species. Inorganic compounds of different antifungals are under investigations. Present study report six complexes of fluconazole with Cu (II)), Fe(II), Cd(II), Co(II), Ni(II) and Mn(II) have been synthesized and characterized by elemental analysis, IR, UV and H-NMR. The elemental analysis and spectroscopic data were found in agreement with the expected values as the metal to ligand value was 1:2 ratios with two chlorides in coordination sphere. The morphology of each complex was studied using scanning electron microscope and compared with fluconazole molecule the flaky-slab rock like particles of pure fluconazole was also observed as reported earlier. However, the complexes of fluconazole were showed different morphology in their micrograph. Fluconazole and its complex derivatives have also been screened in vitro for their antifungal activity against Candida albican and Aspergillus niger by MIC method. The complexes showed varied activity ranging from 2-20%.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Fluconazol/química , Fluconazol/farmacologia , Metais Pesados/química , Microscopia Eletrônica de Varredura , Tecnologia Farmacêutica/métodos , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Cloretos/química , Cloretos/farmacologia , Fluconazol/análogos & derivados , Testes de Sensibilidade Microbiana , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA