Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591517

RESUMO

The HoxD cluster is critical for vertebrate limb development. Enhancers located in both the telomeric and centromeric gene deserts flanking the cluster regulate the transcription of HoxD genes. In rare patients, duplications, balanced translocations or inversions misregulating HOXD genes are responsible for mesomelic dysplasia of the upper and lower limbs. By aCGH, whole-genome mate-pair sequencing, long-range PCR and fiber fluorescent in situ hybridization, we studied patients from two families displaying mesomelic dysplasia limited to the upper limbs. We identified microduplications including the HOXD cluster and showed that microduplications were in an inverted orientation and inserted between the HOXD cluster and the telomeric enhancers. Our results highlight the existence of an autosomal dominant condition consisting of isolated ulnar dysplasia caused by microduplications inserted between the HOXD cluster and the telomeric enhancers. The duplications likely disconnect the HOXD9 to HOXD11 genes from their regulatory sequences. This presumptive loss-of-function may have contributed to the phenotype. In both cases, however, these rearrangements brought HOXD13 closer to telomeric enhancers, suggesting that the alterations derive from the dominant-negative effect of this digit-specific protein when ectopically expressed during the early development of forearms, through the disruption of topologically associating domain structure at the HOXD locus.

2.
Sci Rep ; 9(1): 14431, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594989

RESUMO

Large-scale gene co-expression networks are an effective methodology to analyze sets of co-expressed genes and discover new gene functions or associations. Distances between genes are estimated according to their expression profiles and are visualized in networks that may be further partitioned to reveal communities of co-expressed genes. Creating expression profiles is now eased by the large amounts of publicly available expression data (microarrays and RNA-seq). Although many distance calculation methods have been intensively compared and reviewed in the past, it is unclear how to proceed when many samples reflecting a wide range of different conditions are available. Should as many samples as possible be integrated into network construction or be partitioned into smaller sets of more related samples? Previous studies have indicated a saturation in network performances to capture known associations once a certain number of samples is included in distance calculations. Here, we examined the influence of sample size on co-expression network construction using microarray and RNA-seq expression data from three plant species. We tested different down-sampling methods and compared network performances in recovering known gene associations to networks obtained from full datasets. We further examined how aggregating networks may help increase this performance by testing six aggregation methods.

3.
Am J Hum Genet ; 105(5): 1040-1047, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31630789

RESUMO

Variants in genes encoding ribosomal proteins have thus far been associated with Diamond-Blackfan anemia, a rare inherited bone marrow failure, and isolated congenital asplenia. Here, we report one de novo missense variant and three de novo splice variants in RPL13, which encodes ribosomal protein RPL13 (also called eL13), in four unrelated individuals with a rare bone dysplasia causing severe short stature. The three splice variants (c.477+1G>T, c.477+1G>A, and c.477+2 T>C) result in partial intron retention, which leads to an 18-amino acid insertion. In contrast to observations from Diamond-Blackfan anemia, we detected no evidence of significant pre-rRNA processing disturbance in cells derived from two affected individuals. Consistently, we showed that the insertion-containing protein is stably expressed and incorporated into 60S subunits similar to the wild-type protein. Erythroid proliferation in culture and ribosome profile on sucrose gradient are modified, suggesting a change in translation dynamics. We also provide evidence that RPL13 is present at high levels in chondrocytes and osteoblasts in mouse growth plates. Taken together, we show that the identified RPL13 variants cause a human ribosomopathy defined by a rare skeletal dysplasia, and we highlight the role of this ribosomal protein in bone development.

4.
Prenat Diagn ; 39(11): 986-992, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31273809

RESUMO

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.

5.
Genet Med ; 21(11): 2663, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31267042

RESUMO

In the Acknowledgements section of the paper the authors neglected to mention that the study was supported by a grant from the National Human Genome Research Institute (NHGRI) UM1HG007301 (S.H., M.L.T.). In addition, the award of MD was associated with the authors Michelle L. Thompson and Susan Hiatt instead of PhD. The PDF and HTML versions of the Article have been modified accordingly.

7.
Hum Mutat ; 40(11): 1993-2000, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31230393

RESUMO

Human retrocopies, that is messenger RNA transcripts benefitting from the long interspersed element 1 machinery for retrotransposition, may have specific consequences for genomic testing. Next genetration sequencing (NGS) techniques allow the detection of such mobile elements but they may be misinterpreted as genomic duplications or be totally overlooked. We report eight observations of retrocopies detected during diagnostic NGS analyses of targeted gene panels, exome, or genome sequencing. For seven cases, while an exons-only copy number gain was called, read alignment inspection revealed a depth of coverage shift at every exon-intron junction where indels were also systematically called. Moreover, aberrant chimeric read pairs spanned entire introns or were paired with another locus for terminal exons. The 8th retrocopy was present in the reference genome and thus showed a normal NGS profile. We emphasize the existence of retrocopies and strategies to accurately detect them at a glance during genetic testing and discuss pitfalls for genetic testing.

8.
Genet Med ; 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155615

RESUMO

PURPOSE: Mediator is a multiprotein complex that allows the transfer of genetic information from DNA binding proteins to the RNA polymerase II during transcription initiation. MED12L is a subunit of the kinase module, which is one of the four subcomplexes of the mediator complex. Other subunits of the kinase module have been already implicated in intellectual disability, namely MED12, MED13L, MED13, and CDK19. METHODS: We describe an international cohort of seven affected individuals harboring variants involving MED12L identified by array CGH, exome or genome sequencing. RESULTS: All affected individuals presented with intellectual disability and/or developmental delay, including speech impairment. Other features included autism spectrum disorder, aggressive behavior, corpus callosum abnormality, and mild facial morphological features. Three individuals had a MED12L deletion or duplication. The other four individuals harbored single-nucleotide variants (one nonsense, one frameshift, and two splicing variants). Functional analysis confirmed a moderate and significant alteration of RNA synthesis in two individuals. CONCLUSION: Overall data suggest that MED12L haploinsufficiency is responsible for intellectual disability and transcriptional defect. Our findings confirm that the integrity of this kinase module is a critical factor for neurological development.

9.
Am J Med Genet A ; 179(6): 993-1000, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30888095

RESUMO

This report presents two families with interstitial 11q24.2q24.3 deletion, associated with malformations, hematologic features, and typical facial dysmorphism, observed in Jacobsen syndrome (JS), except for intellectual disability (ID). The smallest 700 Kb deletion contains only two genes: FLI1 and ETS1, and a long noncoding RNA, SENCR, narrowing the minimal critical region for some features of JS. Consistent with recent literature, it adds supplemental data to confirm the crucial role of FLI1 and ETS1 in JS, namely FLI1 in thrombocytopenia and ETS1 in cardiopathy and immune deficiency. It also supports that combined ETS1 and FLI1 haploinsufficiency explains dysmorphic features, notably ears, and nose anomalies. Moreover, it raises the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, because of its early role in endothelial cell commitment and function. Considering ID and autism spectrum disorder, which are some of the main features of JS, a participation of ETS1, FLI1, or SENCR cannot be excluded. But, considering the normal neurodevelopment of our patients, their role would be either minor or with an important variability in penetrance. Furthermore, according to literature, ARHGAP32 and KIRREL3 seem to be the strongest candidate genes in the 11q24 region for other Jacobsen patients.

10.
Am J Hum Genet ; 104(2): 213-228, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30639323

RESUMO

Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.

11.
Phytochemistry ; 157: 135-144, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30399496

RESUMO

The UDP-glycosyltransferase UGT88F subfamily has been described first in Malus x domestica with the characterization of UGT88F1. Up to now UGT88F1 was one of the most active UGT glycosylating dihydrochalcones in vitro. The involvement of UGT88F1 in phloridzin (phloretin 2'-O-glucoside) synthesis, the main apple tree dihydrochalcone, was further confirmed in planta. Since the characterization of UGT88F1, this new UGT subfamily has been poorly studied probably because it seemed restricted to Maloideae. In the present study, we investigate the apple tree genome to identify and biochemically characterize the whole UGT88F subfamily. The apple tree genome contains five full-length UGT88F genes out of which three newly identified members (UGT88F6, UGT88F7 and UGT88F8) and a pseudogene. These genes are organized into two genomic clusters resulting from the recent global genomic duplication event in the apple tree. We show that recombinant UGT88F8 protein specifically glycosylates phloretin in the 2'OH position to synthetize phloridzin in vitro and was therefore named UDP-glucose: phloretin 2'-O-glycosyltransferase. The Km values of UGT88F8 are 7.72 µM and 10.84 µM for phloretin and UDP-glucose respectively and are in the same range as UGT88F1 catalytic parameters thus constituting two isoforms. Co-expression patterns of both UGT88F1 and UGT88F8 argue for a redundant function in phloridzin biosynthesis in planta. Contrastingly, recombinant UGT88F6 protein is able to glycosylate in vitro a wide range of flavonoids including flavonols, flavones, flavanones, chalcones and dihydrochalcones, although flavonols are the preferred substrates, e.g. Km value for kaempferol is 2.1 µM. Depending on the flavonoid, glycosylation occurs at least on the 3-OH and 7-OH positions. Therefore UGT88F6 corresponds to an UDP-glucose: flavonoid 3/7-O-glycosyltransferase. Finally, a molecular modeling study highlights a very high substitution rate of residues in the acceptor binding pocket between UGT88F8 and UGT88F6 which is responsible for the enzymes divergence in substrate and regiospecificity, despite an overall high protein homology.


Assuntos
Genômica , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Malus/enzimologia , Malus/genética , Genoma de Planta/genética , Glicosiltransferases/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Conformação Proteica , Temperatura Ambiente
12.
J Biotechnol ; 289: 103-111, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30468817

RESUMO

Cytokinins (CK) have been extensively studied for their roles in plant development. Recently, they also appeared to ensure crucial functions in the pathogenicity of some bacterial and fungal plant pathogens. Thus, identifying cytokinin-producing pathogens is a prerequisite to gain a better understanding of their role in pathogenicity. Taking advantage of the cytokinin perception properties of Malus domestica CHASE Histidine Kinase receptor 2 (MdCHK2), we thereby developed a selective and highly sensitive yeast biosensor for the application of cytokinin detection in bacterial samples. The biosensor is based on the mutated sln1Δ Saccharomyces cerevisiae strain expressing MdCHK2. The biosensor does not require any extraction or purification steps of biological samples, enabling cytokinin analysis directly from crude bacterial supernatants. For the first time, the production of cytokinin was shown in the well-known plant pathogenic bacteria Erwinia amylovora and was also revealed in human pathogens Staphylococcus aureus and Streptococcus agalactiae. Importantly, this biosensor was shown to be an efficient tool for unraveling certain steps in cytokinin biosynthesis by micro-organisms since this it was successfully used to unveil the role of ygdH22, a LOG-like gene, that is probably involved in cytokinin biosynthesis pathway in Escherichia coli. Overall, we demonstrated that our biosensor displays several advantages including time- and cost-effectiveness by allowing a rapid and specific detection of cytokinins in bacterial supernatants These results also support its scalability to high-throughput formats.

13.
Eur J Med Genet ; 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30472483

RESUMO

Autism spectrum disorders are complex neurodevelopmental syndromes characterized by phenotypic and genetic heterogeneity. Further identification of causal genes may help in better understanding the underlying mechanisms of the disorder, thus improving the patients' management. To date, abnormal synaptogenesis is thought to be one of the major underlying causes of autism spectrum disorders. Here, using oligoarray-based comparative genomic hybridization, we identified a de novo deletion at 2q37.2 locus spanning 1 Mb and encompassing AGAP1 and SH3BP4, in a boy with autism and intellectual disability. Both genes have been described as being involved in endosomal trafficking, and AGAP1 in particular has been shown to be expressed in the developing brain and to play a role in dendritic spine formation and synapse function, making it a potential causative gene to our patient's phenotype.

14.
Genet Med ; 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30190612

RESUMO

PURPOSE: To assess the contribution of rare variants in the genetic background toward variability of neurodevelopmental phenotypes in individuals with rare copy-number variants (CNVs) and gene-disruptive variants. METHODS: We analyzed quantitative clinical information, exome sequencing, and microarray data from 757 probands and 233 parents and siblings who carry disease-associated variants. RESULTS: The number of rare likely deleterious variants in functionally intolerant genes ("other hits") correlated with expression of neurodevelopmental phenotypes in probands with 16p12.1 deletion (n=23, p=0.004) and in autism probands carrying gene-disruptive variants (n=184, p=0.03) compared with their carrier family members. Probands with 16p12.1 deletion and a strong family history presented more severe clinical features (p=0.04) and higher burden of other hits compared with those with mild/no family history (p=0.001). The number of other hits also correlated with severity of cognitive impairment in probands carrying pathogenic CNVs (n=53) or de novo pathogenic variants in disease genes (n=290), and negatively correlated with head size among 80 probands with 16p11.2 deletion. These co-occurring hits involved known disease-associated genes such as SETD5, AUTS2, and NRXN1, and were enriched for cellular and developmental processes. CONCLUSION: Accurate genetic diagnosis of complex disorders will require complete evaluation of the genetic background even after a candidate disease-associated variant is identified.

15.
Sci Rep ; 8(1): 10885, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022075

RESUMO

Co-expression networks are essential tools to infer biological associations between gene products and predict gene annotation. Global networks can be analyzed at the transcriptome-wide scale or after querying them with a set of guide genes to capture the transcriptional landscape of a given pathway in a process named Pathway Level Coexpression (PLC). A critical step in network construction remains the definition of gene co-expression. In the present work, we compared how Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SCC), their respective ranked values (Highest Reciprocal Rank (HRR)), Mutual Information (MI) and Partial Correlations (PC) performed on global networks and PLCs. This evaluation was conducted on the model plant Arabidopsis thaliana using microarray and differently pre-processed RNA-seq datasets. We particularly evaluated how dataset × distance measurement combinations performed in 5 PLCs corresponding to 4 well described plant metabolic pathways (phenylpropanoid, carbohydrate, fatty acid and terpene metabolisms) and the cytokinin signaling pathway. Our present work highlights how PCC ranked with HRR is better suited for global network construction and PLC with microarray and RNA-seq data than other distance methods, especially to cluster genes in partitions similar to biological subpathways.

16.
Am J Med Genet A ; 176(7): 1614-1617, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29704302

RESUMO

Ankyloglossia is a congenital oral anomaly characterized by the presence of a hypertrophic and short lingual frenulum. Mutations in the gene encoding the transcription factor TBX22 have been involved in isolated ankyloglossia and X-linked cleft palate. The knockout of Lgr5 in mice results in ankyloglossia. Here, we report a five-generation family including patients with severe ankyloglossia and missing lower central incisors. Two members of this family also exhibited congenital anorectal malformations. In this report, male-to-male transmission was in favor of an autosomal dominant inheritance, which allowed us to exclude the X-linked TBX22 gene. Linkage analysis using short tandem repeat markers located in the vicinity of LGR5 excluded this gene as a potential candidate. These results indicate genetic heterogeneity for ankyloglossia. Further investigations with additional families are required in order to identify novel candidate genes.

17.
Int J Mol Sci ; 19(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494553

RESUMO

Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Microambiente Tumoral , Adolescente , Adulto , Biomarcadores , Medula Óssea/patologia , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Feminino , Humanos , Imunofenotipagem , Cariótipo , Masculino , Células-Tronco Mesenquimais/patologia , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/patologia , Adulto Jovem
18.
NPJ Genom Med ; 2: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263841

RESUMO

Phelan-McDermid syndrome (PMS) is characterized by a variety of clinical symptoms with heterogeneous degrees of severity, including intellectual disability (ID), absent or delayed speech, and autism spectrum disorders (ASD). It results from a deletion of the distal part of chromosome 22q13 that in most cases includes the SHANK3 gene. SHANK3 is considered a major gene for PMS, but the factors that modulate the severity of the syndrome remain largely unknown. In this study, we investigated 85 patients with different 22q13 rearrangements (78 deletions and 7 duplications). We first explored the clinical features associated with PMS, and provide evidence for frequent corpus callosum abnormalities in 28% of 35 patients with brain imaging data. We then mapped several candidate genomic regions at the 22q13 region associated with high risk of clinical features, and suggest a second locus at 22q13 associated with absence of speech. Finally, in some cases, we identified additional clinically relevant copy-number variants (CNVs) at loci associated with ASD, such as 16p11.2 and 15q11q13, which could modulate the severity of the syndrome. We also report an inherited SHANK3 deletion transmitted to five affected daughters by a mother without ID nor ASD, suggesting that some individuals could compensate for such mutations. In summary, we shed light on the genotype-phenotype relationship of patients with PMS, a step towards the identification of compensatory mechanisms for a better prognosis and possibly treatments of patients with neurodevelopmental disorders.

19.
Front Plant Sci ; 8: 1614, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979279

RESUMO

Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important Malus domestica species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with Arabidopsis AHK clearly displayed three distinct profiles. The three groups exhibited architectural variations, especially in the N-terminal part including the cytokinin sensing domain. Using a yeast complementation assay, we showed that MdCHK2 perceives a broad spectrum of cytokinins with a substantial sensitivity whereas both MdCHK4 homologs exhibit a narrow spectrum. Both MdCHK3 homologs perceived some cytokinins but surprisingly they exhibited a basal constitutive activity. Interaction studies revealed that MdCHK2, MdCHK4a, and MdCHK4b homodimerized whereas MdCHK3a and MdCHK3b did not. Finally, qPCR analysis and bioinformatics approach pointed out contrasted expression patterns among the three MdCHK groups as well as distinct sets of co-expressed genes. Our study characterized for the first time the five cytokinin receptors in apple tree and provided a framework for their further functional studies.

20.
Eur J Hum Genet ; 25(8): 930-934, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28612834

RESUMO

Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/genética , Transtornos dos Cromossomos Sexuais/genética , Trissomia/genética , Cariótipo XYY/genética , Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/diagnóstico , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Fenótipo , Aberrações dos Cromossomos Sexuais , Transtornos dos Cromossomos Sexuais/diagnóstico , Transtornos do Cromossomo Sexual no Desenvolvimento Sexual/diagnóstico , Trissomia/diagnóstico , Cariótipo XYY/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA