Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-31534946


With the near-future launch of geostationary pollution monitoring satellite instruments over North America, East Asia, and Europe, the air quality community is preparing for an integrated global atmospheric composition observing system at unprecedented spatial and temporal resolutions. One of the ways that NASA has supported this community preparation is through demonstration of future space-borne capabilities using the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument. This paper integrates repeated high-resolution maps from GeoTASO, ground-based Pandora spectrometers, and low Earth orbit measurements from the Ozone Mapping and Profiler Suite (OMPS), for case studies over two metropolitan areas: Seoul, South Korea on June 9th, 2016 and Los Angeles, California on June 27th, 2017. This dataset provides a unique opportunity to illustrate how geostationary air quality monitoring platforms and ground-based remote sensing networks will close the current spatiotemporal observation gap. GeoTASO observes large differences in diurnal behavior between these urban areas, with NO2 accumulating within the Seoul Metropolitan Area through the day but NO2 peaking in the morning and decreasing throughout the afternoon in the Los Angeles Basin. In both areas, the earliest morning maps exhibit spatial patterns similar to emission source areas (e.g., urbanized valleys, roadways, major airports). These spatial patterns change later in the day due to boundary layer dynamics, horizontal transport, and chemistry. The nominal resolution of GeoTASO is finer than will be obtained from geostationary platforms, but when NO2 data over Los Angeles are up-scaled to the expected resolution of TEMPO, spatial features discussed are conserved. Pandora instruments installed in both metropolitan areas capture the diurnal patterns observed by GeoTASO, continuously and over longer time periods, and will play a critical role in validation of the next generation of satellite measurement.. These case studies demonstrate that different regions can have diverse diurnal patterns and that day-to-day variability due to meteorology or anthropogenic patterns such as weekday/weekend variations in emissions is large. Low Earth orbit measurements, despite their inability to capture the diurnal patterns at fine spatial resolution, will be essential for intercalibrating the geostationary radiances and cross-validating the geostationary retrievals in an integrated global observing system.

Atmos Chem Phys ; 17: 5721-5750, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29780406


The recent update on the US National Ambient Air Quality Standards (NAAQS) of the ground-level ozone (O3/ can benefit from a better understanding of its source contributions in different US regions during recent years. In the Hemispheric Transport of Air Pollution experiment phase 1 (HTAP1), various global models were used to determine the O3 source-receptor (SR) relationships among three continents in the Northern Hemisphere in 2001. In support of the HTAP phase 2 (HTAP2) experiment that studies more recent years and involves higher-resolution global models and regional models' participation, we conduct a number of regional-scale Sulfur Transport and dEposition Model (STEM) air quality base and sensitivity simulations over North America during May-June 2010. STEM's top and lateral chemical boundary conditions were downscaled from three global chemical transport models' (i.e., GEOS-Chem, RAQMS, and ECMWF C-IFS) base and sensitivity simulations in which the East Asian (EAS) anthropogenic emissions were reduced by 20 %. The mean differences between STEM surface O3 sensitivities to the emission changes and its corresponding boundary condition model's are smaller than those among its boundary condition models, in terms of the regional/period-mean (<10 %) and the spatial distributions. An additional STEM simulation was performed in which the boundary conditions were downscaled from a RAQMS (Realtime Air Quality Modeling System) simulation without EAS anthropogenic emissions. The scalability of O3 sensitivities to the size of the emission perturbation is spatially varying, and the full (i.e., based on a 100% emission reduction) source contribution obtained from linearly scaling the North American mean O3 sensitivities to a 20% reduction in the EAS anthropogenic emissions may be underestimated by at least 10 %. The three boundary condition models' mean O3 sensitivities to the 20% EAS emission perturbations are ~8% (May-June 2010)/~11% (2010 annual) lower than those estimated by eight global models, and the multi-model ensemble estimates are higher than the HTAP1 reported 2001 conditions. GEOS-Chem sensitivities indicate that the EAS anthropogenic NO x emissions matter more than the other EAS O3 precursors to the North American O3, qualitatively consistent with previous adjoint sensitivity calculations. In addition to the analyses on large spatial-temporal scales relative to the HTAP1, we also show results on subcontinental and event scales that are more relevant to the US air quality management. The EAS pollution impacts are weaker during observed O3 exceedances than on all days in most US regions except over some high-terrain western US rural/remote areas. Satellite O3 (TES, JPL-IASI, and AIRS) and carbon monoxide (TES and AIRS) products, along with surface measurements and model calculations, show that during certain episodes stratospheric O3 intrusions and the transported EAS pollution influenced O3 in the western and the eastern US differently. Free-running (i.e., without chemical data assimilation) global models underpredicted the transported background O3 during these episodes, posing difficulties for STEM to accurately simulate the surface O3 and its source contribution. Although we effectively improved the modeled O3 by incorporating satellite O3 (OMI and MLS) and evaluated the quality of the HTAP2 emission inventory with the Royal Netherlands Meteorological Institute-Ozone Monitoring Instrument (KNMI-OMI) nitrogen dioxide, using observations to evaluate and improve O3 source attribution still remains to be further explored.

Environ Sci Technol ; 50(6): 2994-3001, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26882468


Baseline ozone refers to observed concentrations of tropospheric ozone at sites that have a negligible influence from local emissions. The Mount Bachelor Observatory (MBO) was established in 2004 to examine baseline air masses as they arrive to North America from the west. In May 2012, we observed an O3 increase of 2.0-8.5 ppbv in monthly average maximum daily 8-hour average O3 mixing ratio (MDA8 O3) at MBO and numerous other sites in the western U.S. compared to previous years. This shift in the O3 distribution had an impact on the number of exceedance days. We also observed a good correlation between daily MDA8 variations at MBO and at downwind sites. This suggests that under specific meteorological conditions, synoptic variation in O3 at MBO can be observed at other surface sites in the western U.S. At MBO, the elevated O3 concentrations in May 2012 are associated with low CO values and low water vapor values, consistent with transport from the upper troposphere/lower stratosphere (UT/LS). Furthermore, the Real-time Air Quality Modeling System (RAQMS) analyses indicate that a large flux of O3 from the UT/LS in May 2012 contributed to the observed enhanced O3 across the western U.S. Our results suggest that a network of mountaintop observations, LiDAR and satellite observations of O3 could provide key data on daily and interannual variations in baseline O3.

Poluentes Atmosféricos/química , Monitoramento Ambiental , Ozônio/química , Atmosfera/química , Fatores de Tempo , Estados Unidos
Nat Commun ; 7: 10267, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758808


Air parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background. Models, satellite data and aircraft observations are used to show fires in tropical Africa and Southeast Asia are the dominant source of high O3 and that low H2O results from large-scale descent within the tropical troposphere. Previous explanations that attribute HOLW structures to transport from the stratosphere or mid-latitude troposphere are inconsistent with our observations. This study suggest a larger role for biomass burning in the radiative forcing of climate in the remote TWP than is commonly appreciated.

J Geophys Res Atmos ; 121(17): 10294-10311, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-29619287


We use the WRF system to study the impacts of biomass burning smoke from Central America on several tornado outbreaks occurring in the US during spring. The model is configured with an aerosol-aware microphysics parameterization capable of resolving aerosol-cloud-radiation interactions in a cost-efficient way for numerical weather prediction (NWP) applications. Primary aerosol emissions are included and smoke emissions are constrained using an inverse modeling technique and satellite-based AOD observations. Simulations turning on and off fire emissions reveal smoke presence in all tornado outbreaks being studied and show an increase in aerosol number concentrations due to smoke. However, the likelihood of occurrence and intensification of tornadoes is higher due to smoke only in cases where cloud droplet number concentration in low level clouds increases considerably in a way that modifies the environmental conditions where the tornadoes are formed (shallower cloud bases and higher low-level wind shear). Smoke absorption and vertical extent also play a role, with smoke absorption at cloud-level tending to burn-off clouds and smoke absorption above clouds resulting in an increased capping inversion. Comparing these and WRF-Chem simulations configured with a more complex representation of aerosol size and composition and different optical properties, microphysics and activation schemes, we find similarities in terms of the simulated aerosol optical depths and aerosol impacts on near-storm environments. This provides reliability on the aerosol-aware microphysics scheme as a less computationally expensive alternative to WRF-Chem for its use in applications such as NWP and cloud-resolving simulations.

Sci Total Environ ; 530-531: 471-482, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25548133


Ozone (O3) has been measured at Great Basin National Park (GBNP) since September 1993. GBNP is located in a remote, rural area of eastern Nevada. Data indicate that GBNP will not comply with a more stringent National Ambient Air Quality Standard (NAAQS) for O3, which is based upon the 3-year average of the annual 4th highest Maximum Daily 8-h Average (MDA8) concentration. Trend analyses for GBNP data collected from 1993 to 2013 indicate that MDA8 O3 increased significantly for November to February, and May. The greatest increase was for May at 0.38, 0.35, and 0.46 ppb yr(-1) for the 95th, 50th, and 5th percentiles of MDA8 O3 values, respectively. With the exception of GBNP, continuous O3 monitoring in Nevada has been limited to the greater metropolitan areas. Due to the limited spatial detail of O3 measurements in rural Nevada, a network of rural monitoring sites was established beginning in July 2011. For a period ranging from July 2011 to June 2013, maximum MDA8 O3 at 6 sites occurred in the spring and summer, and ranged from 68 to 80ppb. Our analyses indicate that GBNP, in particular, is ideally positioned to intercept air containing elevated O3 derived from regional and global sources. For the 2 year period considered here, MDA8 O3 at GBNP was an average of 3.1 to 12.6 ppb higher than at other rural Nevada sites. Measured MDA8 O3 at GBNP exceeded the current regulatory threshold of 75 ppb on 7 occasions. Analyses of synoptic conditions, model tracers, and air mass back-trajectories on these days indicate that stratospheric intrusions, interstate pollution transport, wildfires, and Asian pollution contributed to elevated O3 observed at GBNP. We suggest that regional and global sources of ozone may pose challenges to achieving a more stringent O3 NAAQS in rural Nevada.

Poluentes Atmosféricos/análise , Monitoramento Ambiental , Ozônio/análise , Poluição do Ar/estatística & dados numéricos , Nevada