Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Endocrine ; 67(1): 180-189, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31494802

RESUMO

PURPOSE: Early weaning (EW) is a stressful condition that programmes a child to be overweight in adult life. Fat mass depends on glucocorticoids (GC) to regulate adipogenesis and lipogenesis. We hypothesised that the increased adiposity in models of EW was due to a disturbed HPA axis and/or disrupted GC function. METHODS: We used two experimental models, pharmacological early weaning (PEW, dams were bromocriptine-treated) and non-pharmacological early weaning (NPEW, dams' teats were wrapped with a bandage), which were initiated during the last 3 days of lactation. Offspring from both genders was analysed on postnatal day 180. RESULTS: Offspring in both models were overweight with increased visceral fat mass, but plasma corticosterone was increased in both genders in the PEW group but not the NPEW group. NPEW males had increased GRα expression in visceral adipose tissue (VAT), and GRα expression decreased in PEW males in subcutaneous adipose tissue (SAT). Females in both EW groups had increased 11ßHSD1 expression in SAT. PEW males had increased C/EBPß expression in SAT. PEW females had lower PPARy and FAS expression in VAT than the NPEW females. We detected a sex dimorphism in VAT and SAT in the EW groups regarding 11ßHSD1, GRα and C/EBPß expression. CONCLUSIONS: The accumulated adiposity induced by EW exhibited distinct mechanisms depending on gender, specific fat deposition and GC metabolism and action. The higher proportion of VAT/SAT in both sets of EW males may be related to the action of GC in these tissues, and the higher conversion of GC in SAT in females may explain the differences in the fat distribution.

2.
Horm Metab Res ; 52(1): 58-66, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31537024

RESUMO

Early weaning (EW) is a risk factor for metabolic syndrome. Male rats that were precociously weaned present neonatal malnutrition and, in adulthood, developed overweight, accumulation of body fat, dyslipidemia, changes in glycemic homeostasis, hyperleptinemia, and increase of vitamin D. As metabolic profile of early-weaned females is not known, we investigated the endocrine-metabolic parameters in adolescence and adult female rats of 2 different EW models. Wistar lactating rats and pups from both sexes were separated into 3 groups: non-pharmacological EW (NPEW), dams were involved with a bandage interrupting suckling in the last 3 days of lactation; pharmacological EW (PEW), dams were bromocriptine-treated (0.5 mg/twice a day via intraperitoneal injection) for 3 days before weaning; and control, dams whose pups ate milk throughout lactation. At 21 days-old, NPEW and PEW females had lower body weight. At 180 days-old, NPEW and PEW females showed higher feed efficiency, weight gain, body fat percentage, and greater accumulation of gonadal and retroperitoneal fat depots associated with adipocyte hypertrophy. NPEW females also showed hyperphagia. Only NPEW females presented hyperleptinemia. Plasma thyroid hormones and vitamin D were unchanged among EW females. Regarding sex hormones, at 45 days-old, no change was found in EW females, while at 180 days-old, PEW females had hypoestrogenemia. EW increases the risk for obesity in female rats in adulthood, as already demonstrated for males, although through distinct mechanisms involving some hormones.

3.
J Physiol ; 598(3): 489-502, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31828802

RESUMO

KEY POINTS: The World Health Organization recommends exclusive breastfeeding until 6 months of age as an important strategy to reduce child morbidity and mortality. Studies have associated early weaning with the development of obesity and type 2 diabetes in adulthood. In our model, we demonstrated that early weaning leads to increased insulin secretion in adolescent males and reduced insulin secretion in adult offspring. Early weaned males exhibit insulin resistance in skeletal muscle. Early weaning did not change insulin signalling in the muscle of female offspring. Taking into account that insulin resistance is one of the primary factors for the development of type 2 diabetes mellitus, this work demonstrates the importance of breastfeeding in the fight against this disease. ABSTRACT: Early weaning (EW) leads to short- and long-term obesity and diabetes. This phenotype is also observed in experimental models, in which early-weaned males exhibit abnormal insulinaemia in adulthood. However, studies regarding the effect of EW on pancreatic islets are rare. We investigated the mechanisms by which glycaemic homeostasis is altered in EW models through evaluations of insulin secretion and its signalling pathway in offspring. Lactating Wistar rats and their pups were divided into the following groups: non-pharmacological EW (NPEW): mothers were wrapped with an adhesive bandage on the last 3 days of lactation; pharmacological EW (PEW): mothers received bromocriptine to inhibit prolactin (1 mg/kg body mass/day) on the last 3 days of lactation; and control (C): pups underwent standard weaning at PN21. Offspring of both sexes were euthanized at PN45 and PN180. At PN45, EW males showed higher insulin secretion (vs. C). At PN170, PEW males exhibited hyperglycaemia in an oral glucose tolerance test (vs. C and NPEW). At PN180, EW male offspring were heavier; however, both sexes showed higher visceral fat. Insulin secretion was lower in EW offspring of both sexes. Males from both EW groups had lower glucokinase in islets, but unexpectedly, PEW males showed higher GLUT2, than did C. EW males exhibited lower insulin signalling in muscle. EW females exhibited no changes in these parameters compared with C. We demonstrated distinct alterations in the insulin secretion of EW rats at different ages. Despite the sex dimorphism in insulin secretion in adolescence, both sexes showed impaired insulin secretion in adulthood due to EW.

4.
Environ Pollut ; 258: 113781, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31864076

RESUMO

Maternal nicotine exposure during lactation induces liver damage in adult male rats. However, the mechanism in males is unknown and females have not been tested. Here, we determined the liver lipid composition and lipogenic enzymes in male and female offspring at two ages in a model of postnatal nicotine exposure. Osmotic minipumps were implanted in lactating Wistar rat dams at postnatal day (PND) 2 to release 6 mg/kg/day of nicotine (NIC group) or saline (CON group) for 14 days. Offspring received a standard diet from weaning until euthanasia at PND120 (1 pup/litter/sex) or PND180 (2 pups/litter/sex). At PND120, NIC males showed lower plasma triglycerides (TG), steatosis degree 1, higher hepatic cholesterol (CHOL) ester, free fatty acids, monoacylglycerol content as well as acetyl-coa carboxylase-1 (ACC-1) and fatty acid synthase (FAS) protein expression in the liver compared to CON males. At this age, NIC females had preserved hepatocytes architecture, higher plasma CHOL, higher CHOL ester and lower total CHOL content in the liver compared to CON females. At PND180, NIC males showed steatosis degrees 1 and 2, higher TG, lower free fatty acids and total CHOL content in the liver and an increase in ACC-1 hepatic protein expression. NIC females had higher plasma TG and CHOL levels, no change in hepatic morphology, lower CHOL ester and free fatty acids in the liver, which also showed higher total ACC-1 and FAS protein expression. Maternal nicotine exposure induces long-term liver dysfunction, with an alteration in hepatic cytoarchitecture that was aggravated with age in males. Concerning females, despite unchanged hepatic cytoarchitecture, lipid metabolism was compromised, which deserves further attention.

5.
Environ Pollut ; 250: 312-322, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31003143

RESUMO

Bisphenol S (BPS) has replaced bisphenol A (BPA), a known non-persistent endocrine disrupting chemical, in several products. Considering that little is known regarding BPS effects, especially during critical windows of ontogenetic development, and that BPA, which is quite similar to BPS, is know to be transferred to the offspring via the placenta and milk, in the present study we investigated the behavioral, biochemical and endocrine profiles of Wistar rats born from dams that were BPS-exposed [groups: BPS10 (10 µg/kg/day), BPS50 (50 µg/kg/day)] during pregnancy and lactation. Due to the non-monotonic dose-response effect of bisphenol, the data of both BPS groups were directly compared with those of the controls, not to each other. Males and females were analyzed separately. At weaning, male BPS50 offspring had hypotriglyceridemia and hyperthyroxinemia, whereas BPS50 females showed higher 25(OH)D levels. At adulthood, BPS offspring of both sexes had lower food intake. BPS males showed lower visceral adiposity. BPS50 females had smaller fat droplets in brown adipocytes. BPS males showed higher anxiety and higher locomotor activity, while BPS10 females showed lower exploration. During a food challenge test at adulthood, BPS males consumed more high-fat diet at 30 min. BPS10 females initially (at 30 min) consumed more high-fat diet but, after 12 h, less of this diet was consumed. BPS50 males had hypertriglyceridemia and lower plasma T3, while BPS females showed lower plasma T4. BPS10 females had lower progesterone, whereas BPS50 females had higher plasma 25(OH)D. Maternal BPS exposure has adverse effects on the triacylglycerol, hormones levels and behavior of the progeny. Furthermore, the increased preference for the fat-enriched diet suggests an increased risk for obesity and its health consequences in the long term.


Assuntos
Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Sulfonas/toxicidade , Animais , Compostos Benzidrílicos , Aleitamento Materno , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Sistema Endócrino , Feminino , Lactação , Lipídeos/sangue , Masculino , Exposição Materna , Leite , Obesidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar
6.
Eur J Nutr ; 2019 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-30982179

RESUMO

PURPOSE: Obesity is predominant in women of reproductive age. Roux-en-Y gastric bypass (RYGB) is the most common bariatric procedure that is performed in obese women for weight loss and metabolic improvement. However, some studies suggest that this procedure negatively affects offspring. Herein, using Western diet (WD)-obese female rats, we investigated the effects of maternal RYGB on postnatal body development, glucose tolerance, insulin secretion and action in their adult male F1 offspring. METHODS: Female Wistar rats consumed a Western diet (WD) for 18 weeks, before being submitted to RYGB (WD-RYGB) or SHAM (WD-SHAM) operations. After 5 weeks, WD-RYGB and WD-SHAM females were mated with control male breeders, and the F1 offspring were identified as: WD-RYGB-F1 and WD-SHAM-F1. RESULTS: The male F1 offspring of WD-RYGB dams exhibited decreased BW, but enhanced total nasoanal length gain. At 120 days of age, WD-RYGB-F1 rats displayed normal fasting glycemia and glucose tolerance but demonstrated reduced insulinemia and higher glucose disappearance after insulin stimulus. In addition, these rodents presented insulin resistance in the gastrocnemius muscle and retroperitoneal fat, as judged by lower Akt phosphorylation after insulin administration, but an increase in this protein in the liver. Finally, the islets from WD-RYGB-F1 rats secreted less insulin in response to glucose and displayed increased ß-cell area and mass. CONCLUSIONS: RYGB in WD dams negatively affected their F1 offspring, leading to catch-up growth, insulin resistance in skeletal muscle and white fat, and ß-cell dysfunction. Therefore, our data are the first to demonstrate that the RYGB in female rats may aggravate the metabolic imprinting induced by maternal WD consumption, in their male F1 descendants. However, since we only used male F1 rats, further studies are necessary to demonstrate if such effect may also occur in female F1 offspring from dams that underwent RYGB operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA