Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32662993

RESUMO

Fully conjugated ladder polymers (CLP) possess unique optical and electronic properties and are considered promising materials for applications in (opto)electronic devices. Poly(indenoindene) is a CLP consisting of an alternating array of five- and six-membered rings, which has remained elusive so far. Here, we report an on-surface synthesis of oligo(indenoindene) on Au(111). Its structure and a low electronic band gap have been elucidated by low-temperature scanning tunneling microscopy and spectroscopy and noncontact atomic force microscopy, complemented by density functional theory calculations. Achieving defect-free segments of oligo(indenoindene) offers exclusive insight into this CLP and provides the basis to further synthetic approaches.

2.
J Am Chem Soc ; 2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32657120

RESUMO

Nanographenes (NGs) have gained increasing attention due to their immense potential as tailor-made organic materials for nanoelectronics and spintronics. They exhibit a rich spectrum of physicochemical properties that can be tuned by controlling the size, the edge structure or by introducing structural defects in the honeycomb lattice. Here, we report the design and on-surface synthesis of NGs containing several odd-membered polycycles induced by a thermal procedure on Au(111). Our scanning tunneling microscopy, non-contact atomic force microscopy and scanning tunneling spectroscopy measurements, complemented by computational investigations, describe the formation of two non-benzenoid NGs (2A and 2B) containing four embedded azulene units in the polycyclic framework, via on-surface oxidative ring-closure reactions. Interestingly, we observe surface-catalyzed skeletal ring rearrangement reactions in the NGs, which lead to the formation of additional hep-tagonal rings as well as pentalene and as-indacene units in 2A and 2B, respectively. Both 2A and 2B on Au(111) exhibit narrow experimental frontier electronic gaps of 0.96 and 0.85 eV, respectively, and Fermi level pinning of their HOMO to-gether with considerable electron transfer to the substrate. Ab initio calculations estimate moderate open-shell biradical characters for the NGs in gas phase.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32589816

RESUMO

Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Here we report the first enantioselective on-surface synthesis of molecular structures from an intial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9-ethynylphenanthrene (9-EP) upon annealing to 500 K on the chiral Pd3-terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9-EP propellers. The observed behavior is in stark contrast to the reaction of 9-EP on the chiral Pd1-terminated PdGa{111} surfaces, where 9-EP monomers that are in nearly enantiopure configuration, dimerize without particular enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.

4.
J Am Chem Soc ; 142(28): 12046-12050, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32589416

RESUMO

Coronoids, polycyclic aromatic hydrocarbons with geometrically defined cavities, are promising model structures of porous graphene. Here, we report the on-surface synthesis of C168 and C140 coronoids, referred to as [6]- and [5]coronoid, respectively, using 5,9-dibromo-14-phenylbenzo[m]tetraphene as the precursor. These coronoids entail large cavities (>1 nm) with inner zigzag edges, distinct from their outer armchair edges. While [6]coronoid is planar, [5]coronoid is not. Low-temperature scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy unveil structural and electronic properties in accordance with those obtained from density functional theory calculations. Detailed analysis of ring current effects identifies the rings with the highest aromaticity of these coronoids, whose pattern matches their Clar structure. The pores of the obtained coronoids offer intriguing possibilities of further functionalization toward advanced host-guest applications.

5.
Chem Commun (Camb) ; 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32495757

RESUMO

Zethrenes are model diradicaloids with potential applications in spintronics and optoelectronics. Despite a rich chemistry in solution, on-surface synthesis of zethrenes has never been demonstrated. We report the on-surface synthesis of super-heptazethrene on Au(111). Scanning tunneling spectroscopy investigations reveal that super-heptazethrene exhibits an exceedingly low HOMO-LUMO gap of 230 meV and, in contrast to its open-shell singlet ground state in the solution phase and in the solid-state, likely adopts a closed-shell ground state on Au(111).

6.
Artigo em Inglês | MEDLINE | ID: mdl-32350979

RESUMO

Cumulene compounds are notoriously difficult to prepare and study because their reactivity increases dramatically with the increasing number of consecutive double bonds. In this respect, the emerging field of on-surface synthesis provides exceptional opportunities because it relies on reactions on clean metal substrates under well-controlled ultrahigh-vacuum conditions. Here we report the on-surface synthesis of a polymer linked by cumulene-like bonds on a Au(111) surface via sequential thermally activated dehalogenative C-C coupling of a tribenzoazulene precursor equipped with two dibromomethylene groups. The structure and electronic properties of the resulting polymer with cumulene-like pentagon-pentagon and heptagon-heptagon connections have been investigated by means of scanning probe microscopy and spectroscopy methods and X-ray photoelectron spectroscopy, complemented by density functional theory calculations. Our results provide perspectives for the on-surface synthesis of cumulene-containing compounds, as well as protocols relevant to the stepwise fabrication of carbon-carbon bonds on surfaces.

7.
Angew Chem Int Ed Engl ; 59(29): 12041-12047, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32301570

RESUMO

Triangular zigzag nanographenes, such as triangulene and its π-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer. The chemical structures of the dimers have been characterized by bond-resolved scanning tunneling microscopy. Scanning tunneling spectroscopy and inelastic electron tunneling spectroscopy measurements reveal collective singlet-triplet spin excitations in the dimers, demonstrating efficient intertriangulene magnetic coupling.

8.
Adv Mater ; : e1906054, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32048409

RESUMO

Graphene nanoribbons (GNRs) have attracted much interest due to their largely modifiable electronic properties. Manifestation of these properties requires atomically precise GNRs which can be achieved through a bottom-up synthesis approach. This has recently been applied to the synthesis of width-modulated GNRs hosting topological electronic quantum phases, with valence electronic properties that are well captured by the Su-Schrieffer-Heeger (SSH) model describing a 1D chain of interacting dimers. Here, ultralow bandgap GNRs with charge carriers behaving as massive Dirac fermions can be realized when their valence electrons represent an SSH chain close to the topological phase boundary, i.e., when the intra- and interdimer coupling become approximately equal. Such a system has been achieved via on-surface synthesis based on readily available pyrene-based precursors and the resulting GNRs are characterized by scanning probe methods. The pyrene-based GNRs (pGNRs) can be processed under ambient conditions and incorporated as the active material in a field effect transistor. A quasi-metallic transport behavior is observed at room temperature, whereas at low temperature, the pGNRs behave as quantum dots showing single-electron tunneling and Coulomb blockade. This study may enable the realization of devices based on carbon nanomaterials with exotic quantum properties.

9.
Angew Chem Int Ed Engl ; 59(3): 1334-1339, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31729821

RESUMO

On-surface synthesis offers a versatile approach to prepare novel carbon-based nanostructures that cannot be obtained by conventional solution chemistry. Graphene nanoribbons (GNRs) have potential for a variety of applications. A key issue for their application in molecular electronics is in the fine-tuning of their electronic properties through structural modifications, such as heteroatom doping or the incorporation of non-benzenoid rings. In this context, the covalent fusion of GNRs and porphyrins (Pors) is a highly appealing strategy. Herein we present the selective on-surface synthesis of a Por-GNR hybrid, which consists of two Pors connected by a short GNR segment. The atomically precise structure of the Por-GNR hybrid has been characterized by bond-resolved scanning tunneling microscopy (STM) and noncontact atomic force microscopy (nc-AFM). The electronic properties have been investigated by scanning tunneling spectroscopy (STS), in combination with DFT calculations, which reveals a low electronic gap of 0.4 eV.

10.
Nat Nanotechnol ; 15(1): 22-28, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31819244

RESUMO

The chemical versatility of carbon imparts manifold properties to organic compounds, where magnetism remains one of the most desirable but elusive1. Polycyclic aromatic hydrocarbons, also referred to as nanographenes, show a critical dependence of electronic structure on the topologies of the edges and the π-electron network, which makes them model systems with which to engineer unconventional properties including magnetism. In 1972, Erich Clar envisioned a bow-tie-shaped nanographene, C38H18 (refs. 2,3), where topological frustration in the π-electron network renders it impossible to assign a classical Kekulé structure without leaving unpaired electrons, driving the system into a magnetically non-trivial ground state4. Here, we report the experimental realization and in-depth characterization of this emblematic nanographene, known as Clar's goblet. Scanning tunnelling microscopy and spin excitation spectroscopy of individual molecules on a gold surface reveal a robust antiferromagnetic order with an exchange-coupling strength of 23 meV, exceeding the Landauer limit of minimum energy dissipation at room temperature5. Through atomic manipulation, we realize switching of magnetic ground states in molecules with quenched spins. Our results provide direct evidence of carbon magnetism in a hitherto unrealized class of nanographenes6, and prove a long-predicted paradigm where topological frustration entails unconventional magnetism, with implications for room-temperature carbon-based spintronics7,8.

11.
12.
Chem Commun (Camb) ; 55(89): 13466-13469, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31647065

RESUMO

Azulene, the smallest neutral nonalternant aromatic hydrocarbon, serves not only as a prototype for fundamental studies but also as a versatile building block for functional materials because of its unique opto(electronic) properties. Here, we report the on-surface synthesis and characterization of the homopolymer of azulene connected exclusively at the 2,6-positions using 2,6-diiodoazulene as the monomer precursor. As an intermediate to the formation of polyazulene, a gold-(2,6-azulenylene) chain is observed.

13.
Nat Chem ; 11(10): 924-930, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31477850

RESUMO

Polyacetylene (PA) comprises one-dimensional chains of sp2-hybridized carbon atoms that may take a cis or trans configuration. Owing to its simple chemical structure and exceptional electronic properties, PA is an ideal system to understand the nature of charge transport in conducting polymers. Here, we report the on-surface synthesis of both cis- and trans-PA chains and their atomic-scale characterization. The structure of individual PA chains was imaged by non-contact atomic force microscopy, which confirmed the formation of PA by resolving single chemical bond units. Angle-resolved photoemission spectroscopy suggests a semiconductor-to-metal transition through doping-induced suppression of the Peierls bond alternation of trans-PA on Cu(110). Electronically decoupled trans-PAs exhibit a band gap of 2.4 eV following copper oxide intercalation. Our study provides a platform for studying individual PA chains in real and reciprocal space, which may be further extended to study the intrinsic properties of non-linear excitons in conducting polymers.

14.
J Am Chem Soc ; 141(31): 12346-12354, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309832

RESUMO

Polycyclic hydrocarbons have received great attention due to their potential role in organic electronics and, for open-shell systems with unpaired electron densities, in spintronics and data storage. However, the intrinsic instability of polyradical hydrocarbons severely limits detailed investigations of their electronic structure. Here, we report the on-surface synthesis of conjugated polymers consisting of indeno[2,1-b]fluorene units, which are antiaromatic and open-shell biradicaloids. The observed reaction products, which also include a nonbenzenoid porous ribbon arising from lateral fusion of unprotected indeno[2,1-b]fluorene chains, have been characterized via low-temperature scanning tunneling microscopy/spectroscopy and noncontact atomic force microscopy, complemented by density-functional theory calculations. These polymers present a low band gap when adsorbed on Au(111). Moreover, their pronounced antiaromaticity and radical character, elucidated by ab initio calculations, make them promising candidates for applications in electronics and spintronics. Further, they provide a rich playground to explore magnetism in low-dimensional organic nanomaterials.

15.
J Am Chem Soc ; 141(30): 12011-12020, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31299150

RESUMO

Nonbenzenoid carbocyclic rings are postulated to serve as important structural elements toward tuning the chemical and electronic properties of extended polycyclic aromatic hydrocarbons (PAHs, or namely nanographenes), necessitating a rational and atomically precise synthetic approach toward their fabrication. Here, using a combined bottom-up in-solution and on-surface synthetic approach, we report the synthesis of nonbenzenoid open-shell nanographenes containing two pairs of embedded pentagonal and heptagonal rings. Extensive characterization of the resultant nanographene in solution shows a low optical gap, and an open-shell singlet ground state with a low singlet-triplet gap. Employing ultra-high-resolution scanning tunneling microscopy and spectroscopy, we conduct atomic-scale structural and electronic studies on a cyclopenta-fused derivative on a Au(111) surface. The resultant five to seven rings embedded nanographene displays an extremely narrow energy gap of 0.27 eV and exhibits a pronounced open-shell biradical character close to 1 (y0 = 0.92). Our experimental results are supported by mean-field and multiconfigurational quantum chemical calculations. Access to large nanographenes with a combination of nonbenzenoid topologies and open-shell character should have wide implications in harnessing new functionalities toward the realization of future organic electronic and spintronic devices.

16.
Chemphyschem ; 20(18): 2348-2353, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31304992

RESUMO

We study the band gap of finite N A = 7 armchair graphene nanoribbons (7-AGNRs) on Au(111) through scanning tunneling microscopy/spectroscopy combined with density functional theory calculations. The band gap of 7-AGNRs with lengths of 8 nm and more is converged to within 50 meV of its bulk value of ≈ 2 . 3 eV , while the band gap opens by several hundred meV in very short 7-AGNRs. We demonstrate that even an atomic defect, such as the addition of one hydrogen atom at the termini, has a significant effect - in this case, lowering the band gap. The effect can be captured in terms of a simple analytical model by introducing an effective "electronic length".

17.
J Am Chem Soc ; 141(33): 13158-13164, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31340123

RESUMO

We report the investigation of a conjugated polycyclic hydrocarbon containing multiple nonbenzenoid rings and exhibiting negative curvature-the warped nanographene C80H30-adsorbed on several noble metal surfaces in an ultrahigh vacuum environment. From a detailed analysis of the molecular self-assembly at different molecular coverages via scanning tunneling microscopy and spectroscopy measurements in combination with theoretical modeling, the nature of the intermolecular interactions is unraveled. For high molecular coverages on Cu(111), the formation of homochiral porous networks is observed, which is rationalized by (i) intermolecular π-π interactions between neighboring C80H30 molecules that promote the formation of molecular dimers and (ii) enantioselective intermolecular CH···π interactions between the dimers. Such interactions are also observed after deposition of C80H30 molecules on Au(111) and Ag(111) substrates. Our results provide perspectives for the on-surface study of negatively curved nanographenes which open new avenues to the design of novel and functional chiral structures with potential use in the field of organic optoelectronics.

18.
J Am Chem Soc ; 141(27): 10621-10625, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241927

RESUMO

The electronic and magnetic properties of nanographenes strongly depend on their size, shape and topology. While many nanographenes present a closed-shell electronic structure, certain molecular topologies may lead to an open-shell structure. Triangular-shaped nanographenes with zigzag edges, which exist as neutral radicals, are of considerable interest both in fundamental science and for future technologies aimed at harnessing their intrinsic high-spin magnetic ground states for spin-based operations and information storage. Their synthesis, however, is extremely challenging owing to the presence of unpaired electrons, which confers them with enhanced reactivity. We report a combined in-solution and on-surface synthesis of π-extended triangulene, a non-Kekulé nanographene with the structural formula C33H15, consisting of ten benzene rings fused in a triangular fashion. The distinctive topology of the molecule entails the presence of three unpaired electrons that couple to form a spin quartet ground state. The structure of individual molecules adsorbed on an inert gold surface is confirmed through ultrahigh-resolution scanning tunneling microscopy. The electronic properties are studied via scanning tunneling spectroscopy, wherein unambiguous spectroscopic signatures of the spin-split singly occupied molecular orbitals are found. Detailed insight into its properties is obtained through tight-binding, density functional and many-body perturbation theory calculations, with the latter providing evidence that π-extended triangulene retains its open-shell quartet ground state on the surface. Our work provides unprecedented access to open-shell nanographenes with high-spin ground states, potentially useful in carbon-based spintronics.

19.
Chemphyschem ; 20(18): 2360-2366, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31087751

RESUMO

On-surface synthesis is a unique tool for growing low-dimensional carbon nanomaterials with precise structural control down to the atomic level. This novel approach relies on carefully designed precursor molecules, which are deposited on suitable substrates and activated to ultimately form the desired nanostructures. One of the most applied reactions to covalently interlink molecular precursors is dehalogenative aryl-aryl coupling. Despite the versatility of this approach, many unsuccessful attempts are also known, most of them associated to the poor capability of the activated precursors to couple to each other. Such failure is often related to the steric hindrance between reactants, which may arise due to their coplanarity upon adsorption on a surface. Here, we propose a copolymerization approach to overcome the limitations that prevent intermolecular homocoupling. We apply the strategy of using suitable linkers as additional reactants to the formation of fully conjugated polycyclic nanowires incorporating non-benzenoid rings.

20.
J Am Chem Soc ; 141(19): 7726-7730, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31046260

RESUMO

On-surface synthesis provides an effective approach toward the formation of graphene nanostructures that are difficult to achieve via traditional solution chemistry. Here, we report on the design and synthesis of a nonplanar porous nanographene with 78 sp 2 carbon atoms, namely C78. Through a highly selective oxidative cyclodehydrogenation of 2,3,6,7,10,11-hexa(naphthalen-1-yl)triphenylene (2), propeller nanographene precursor 1 was synthesized in solution. Interestingly, although 1 could not be cyclized further in solution, porous nanographene C78 was successfully achieved from 1 by on-surface assisted cyclodehydrogenation on Au(111). The structure and electronic properties of C78 have been investigated by means of scanning tunneling microscopy, noncontact atomic force microscopy, and scanning tunneling spectroscopy, complemented by computational investigations. Our results provide perspectives for the on-surface synthesis of porous graphene nanostructures, offering a promising strategy for the engineering of graphene materials with tailor-made properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA