Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 149: 106836, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32304826

RESUMO

Asparagaceae: Lomandroideae are a species-rich and economically important subfamily in the monocot order Asparagales, with a center of diversity in Australia. Lomandroideae are ecologically diverse, occupying mesic and arid biomes in Australia and possessing an array of key traits, including sexual dimorphism, storage organs and polyploidy that are potentially adaptive for survival in seasonally arid and fire-dependent habitats. The Lomandroideae phylogeny was reconstructed using maximum likelihood and Bayesian inference criteria, based on plastome data from genome-skimming to infer relationships. A fossil-calibrated chronogram provided a temporal framework for understanding trait transitions. Ancestral state reconstructions and phylogenetic comparative trait correlation analyses provided insights into the evolutionary and ecological drivers associated with Lomandroideae diversification. Lomandroideae diverged from the other Asparagaceae ca. 56.61 million years ago (95% highest posterior density values 70.31-45.34 million years) and the major lineages diversified since the Oligocene. The most recent common ancestor of the clade likely occupied the mesic biome, was hermaphroditic and geophytic. Biome occupancy transitions were correlated with polyploidy and the presence of storage roots. Polyploidy potentially serves as an "enabler" trait, generating novel phenotypes, which may confer tolerance to climatic ranges and soil conditions putatively required for expansion into and occupation of new arid biomes. Storage roots, as a key factor driving biome transitions, may have been associated with fire rather than with aridification events in the Australian flora. This study contributes significantly to our understanding of biome evolution by identifying polyploidy and storage organs as key factors associated with transitions in biome occupancy in this lineage.

2.
Elife ; 92020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32252891

RESUMO

Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions.

3.
Curr Opin Plant Biol ; 54: 93-100, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32325397

RESUMO

Crop domestication is a fascinating area of study, as shown by a multitude of recent reviews. Coupled with the increasing availability of genomic and phenomic resources in numerous crop species, insights from evolutionary biology will enable a deeper understanding of the genetic architecture and short-term evolution of complex traits, which can be used to inform selection strategies. Future advances in crop improvement will rely on the integration of population genetics with plant breeding methodology, and the development of community resources to support research in a variety of crop life histories and reproductive strategies. We highlight recent advances related to the role of selective sweeps and demographic history in shaping genetic architecture, how these breakthroughs can inform selection strategies, and the application of precision gene editing to leverage these connections.

4.
Sci Rep ; 9(1): 9472, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263170

RESUMO

Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster, Caenorhabditis elegans, and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.

5.
Nat Commun ; 10(1): 2878, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253789

RESUMO

Brassica napus, an allotetraploid crop, is hypothesized to be a hybrid from unknown varieties of Brassica rapa and Brassica oleracea. Despite the economic importance of B. napus, much is unresolved regarding its phylogenomic relationships, genetic structure, and diversification. Here we conduct a comprehensive study among diverse accessions from 183 B. napus (including rapeseed, rutabaga, and Siberian kale), 112 B. rapa, and 62 B. oleracea and its wild relatives. Using RNA-seq of B. napus accessions, we define the genetic diversity and sub-genome variance of six genetic clusters. Nuclear and organellar phylogenies for B. napus and its progenitors reveal varying patterns of inheritance and post-formation introgression. We discern regions with signatures of selective sweeps and detect 8,187 differentially expressed genes with implications for B. napus diversification. This study highlights the complex origin and evolution of B. napus providing insights that can further facilitate B. napus breeding and germplasm preservation.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Ploidias , Regulação da Expressão Gênica de Plantas , Genômica , Organelas , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Tubérculos , Polimorfismo de Nucleotídeo Único , RNA de Plantas/genética , Análise de Sequência de RNA , Transcriptoma
6.
BMC Genomics ; 20(1): 95, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700268

RESUMO

BACKGROUND: RNA-sequencing analysis is increasingly utilized to study gene expression in non-model organisms without sequenced genomes. Aethionema arabicum (Brassicaceae) exhibits seed dimorphism as a bet-hedging strategy - producing both a less dormant mucilaginous (M+) seed morph and a more dormant non-mucilaginous (NM) seed morph. Here, we compared de novo and reference-genome based transcriptome assemblies to investigate Ae. arabicum seed dimorphism and to evaluate the reference-free versus -dependent approach for identifying differentially expressed genes (DEGs). RESULTS: A de novo transcriptome assembly was generated using sequences from M+ and NM Ae. arabicum dry seed morphs. The transcripts of the de novo assembly contained 63.1% complete Benchmarking Universal Single-Copy Orthologs (BUSCO) compared to 90.9% for the transcripts of the reference genome. DEG detection used the strict consensus of three methods (DESeq2, edgeR and NOISeq). Only 37% of 1533 differentially expressed de novo assembled transcripts paired with 1876 genome-derived DEGs. Gene Ontology (GO) terms distinguished the seed morphs: the terms translation and nucleosome assembly were overrepresented in DEGs higher in abundance in M+ dry seeds, whereas terms related to mRNA processing and transcription were overrepresented in DEGs higher in abundance in NM dry seeds. DEGs amongst these GO terms included ribosomal proteins and histones (higher in M+), RNA polymerase II subunits and related transcription and elongation factors (higher in NM). Expression of the inferred DEGs and other genes associated with seed maturation (e.g. those encoding late embryogenesis abundant proteins and transcription factors regulating seed development and maturation such as ABI3, FUS3, LEC1 and WRI1 homologs) were put in context with Arabidopsis thaliana seed maturation and indicated that M+ seeds may desiccate and mature faster than NM. The 1901 transcriptomic DEG set GO-terms had almost 90% overlap with the 2191 genome-derived DEG GO-terms. CONCLUSIONS: Whilst there was only modest overlap of DEGs identified in reference-free versus -dependent approaches, the resulting GO analysis was concordant in both approaches. The identified differences in dry seed transcriptomes suggest mechanisms underpinning previously identified contrasts between morphology and germination behaviour of M+ and NM seeds.


Assuntos
Brassicaceae/crescimento & desenvolvimento , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , Sementes/crescimento & desenvolvimento , Sementes/genética , Transcriptoma , Perfilação da Expressão Gênica , Ontologia Genética , Genoma de Planta , Germinação , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Proteínas de Plantas/genética
9.
Sci Rep ; 8(1): 7120, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720618

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

10.
Am J Bot ; 105(4): 631-640, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608785

RESUMO

PREMISE OF THE STUDY: The slipper orchids (Cypripedioideae) are a morphologically distinct subfamily of Orchidaceae. They also have some of the largest genomes in the orchids, which may be due to polyploidy or some other mechanism of genome evolution. We generated 10 transcriptomes and incorporated existing RNA-seq data to infer a multilocus nuclear phylogeny of the Cypripedioideae and to determine whether a whole-genome duplication event (WGD) correlated with the large genome size of this subfamily. Knowing more about timing of ancient polyploidy events can help us understand the evolution of one of the most species-rich plant families. METHODS: Transcriptome data were used to identify low-copy orthologous genes to infer a phylogeny of Orchidaceae and to identify paralogs to place any WGD events on the species tree. KEY RESULTS: Our transcriptome phylogeny confirmed relationships published in previous studies that used fewer markers but incorporated more taxa. We did not find a WGD event at the base of the slipper orchids; however, we did identify one on the Orchidaceae stem lineage. We also confirmed the presence of a previously identified WGD event deeper in the monocot phylogeny. CONCLUSIONS: Although WGD has played a role in the evolution of Orchidaceae, polyploidy does not appear to be responsible for the large genome size of slipper orchids. The conserved set of 775 largely single-copy nuclear genes identified in this study should prove useful in future studies of orchid evolution.


Assuntos
Genoma de Planta/genética , Evolução Biológica , Perfilação da Expressão Gênica , Genes de Plantas/genética , Marcadores Genéticos/genética , Orchidaceae , Filogenia , Poliploidia
11.
Genome Biol Evol ; 10(3): 999-1011, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29617811

RESUMO

Genes that are inherently subject to strong selective constraints tend to be overretained in duplicate after polyploidy. They also continue to experience similar, but somewhat relaxed, constraints after that polyploidy event. We sought to assess for how long the influence of polyploidy is felt on these genes' selective pressures. We analyzed two nested polyploidy events in Brassicaceae: the At-α genome duplication that is the most recent polyploidy in the model plant Arabidopsis thaliana and a more recent hexaploidy shared by the genus Brassica and its relatives. By comparing the strength and direction of the natural selection acting at the population and at the species level, we find evidence for continued intensified purifying selection acting on retained duplicates from both polyploidies even down to the present. The constraint observed in preferentially retained genes is not a result of the polyploidy event: the orthologs of such genes experience even stronger constraint in nonpolyploid outgroup genomes. In both the Arabidopsis and Brassica lineages, we further find evidence for segregating mildly deleterious variants, confirming that the population-level data uncover patterns not visible with between-species comparisons. Using the A. thaliana metabolic network, we also explored whether network position was correlated with the measured selective constraint. At both the population and species level, nodes/genes tended to show similar constraints to their neighbors. Our results paint a picture of the long-lived effects of polyploidy on plant genomes, suggesting that even yesterday's polyploids still have distinct evolutionary trajectories.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Seleção Genética/genética , Arabidopsis/genética , Brassica/genética , Dosagem de Genes/genética , Duplicação Gênica , Genes de Plantas/genética , Filogenia , Poliploidia
12.
Am J Bot ; 105(3): 463-469, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29574686

RESUMO

PREMISE OF THE STUDY: Previous phylogenetic studies employing molecular markers have yielded various insights into the evolutionary history across Brassicales, but many relationships between families remain poorly supported or unresolved. A recent phylotranscriptomic approach utilizing 1155 nuclear markers obtained robust estimates for relationships among 14 of 17 families. Here we report a complete family-level phylogeny estimated using the plastid genome. METHODS: We conducted phylogenetic analyses on a concatenated data set comprising 44,926 bp from 72 plastid genes for species distributed across all 17 families. Our analysis includes three additional families, Tovariaceae, Salvadoraceae, and Setchellanthaceae, that were omitted in the previous phylotranscriptomic study. KEY RESULTS: Our phylogenetic analyses obtained fully resolved and strongly supported estimates for all nodes across Brassicales. Importantly, these findings are congruent with the topology reported in the phylotranscriptomic study. This consistency suggests that future studies could utilize plastid genomes as markers for resolving relationships within some notoriously difficult clades across Brassicales. We used this new phylogenetic framework to verify the placement of the At-α event near the origin of Brassicaceae, with median date estimates of 31.8 to 42.8 million years ago and restrict the At-ß event to one of two nodes with median date estimates between 85 to 92.2 million years ago. These events ultimately gave rise to novel chemical defenses and are associated with subsequent shifts in net diversification rates. CONCLUSIONS: We anticipate that these findings will aid future comparative evolutionary studies across Brassicales, including selecting candidates for whole-genome sequencing projects.


Assuntos
Evolução Biológica , Resistência à Doença/genética , Genes de Plantas , Genomas de Plastídeos , Magnoliopsida/genética , Filogenia , Poliploidia , Brassicaceae/química , Brassicaceae/genética , Núcleo Celular , Evolução Molecular , Magnoliopsida/química , Plastídeos , Especificidade da Espécie
13.
PLoS Genet ; 14(3): e1007267, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29590103

RESUMO

Polyploidy is increasingly seen as a driver of both evolutionary innovation and ecological success. One source of polyploid organisms' successes may be their origins in the merging and mixing of genomes from two different species (e.g., allopolyploidy). Using POInT (the Polyploid Orthology Inference Tool), we model the resolution of three allopolyploidy events, one from the bakers' yeast (Saccharomyces cerevisiae), one from the thale cress (Arabidopsis thaliana) and one from grasses including Sorghum bicolor. Analyzing a total of 21 genomes, we assign to every gene a probability for having come from each parental subgenome (i.e., derived from the diploid progenitor species), yielding orthologous segments across all genomes. Our model detects statistically robust evidence for the existence of biased fractionation in all three lineages, whereby genes from one of the two subgenomes were more likely to be lost than those from the other subgenome. We further find that a driver of this pattern of biased losses is the co-retention of genes from the same parental genome that share functional interactions. The pattern of biased fractionation after the Arabidopsis and grass allopolyploid events was surprisingly constant in time, with the same parental genome favored throughout the lineages' history. In strong contrast, the yeast allopolyploid event shows evidence of biased fractionation only immediately after the event, with balanced gene losses more recently. The rapid loss of functionally associated genes from a single subgenome is difficult to reconcile with the action of genetic drift and suggests that selection may favor the removal of specific duplicates. Coupled to the evidence for continuing, functionally-associated biased fractionation after the A. thaliana At-α event, we suggest that, after allopolyploidy, there are functional conflicts between interacting genes encoded in different subgenomes that are ultimately resolved through preferential duplicate loss.


Assuntos
Brassicaceae/genética , Genes de Plantas , Impressão Genômica , Hibridização Genética , Poliploidia , Evolução Molecular , Modelos Genéticos
14.
Plant Biotechnol J ; 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29412503

RESUMO

To obtain better insight into the mechanisms of selenium hyperaccumulation in Stanleya pinnata, transcriptome-wide differences in root and shoot gene expression levels were investigated in S. pinnata and related nonaccumulator Stanleya elata grown with or without 20 µm selenate. Genes predicted to be involved in sulphate/selenate transport and assimilation or in oxidative stress resistance (glutathione-related genes and peroxidases) were among the most differentially expressed between species; many showed constitutively elevated expression in S. pinnata. A number of defence-related genes predicted to mediate synthesis and signalling of defence hormones jasmonic acid (JA, reported to induce sulphur assimilatory and glutathione biosynthesis genes), salicylic acid (SA) and ethylene were also more expressed in S. pinnata than S. elata. Several upstream signalling genes that up-regulate defence hormone synthesis showed higher expression in S. pinnata than S. elata and might trigger these selenium-mediated defence responses. Thus, selenium hyperaccumulation and hypertolerance in S. pinnata may be mediated by constitutive, up-regulated JA, SA and ethylene-mediated defence systems, associated with elevated expression of genes involved in sulphate/selenate uptake and assimilation or in antioxidant activity. Genes pinpointed in this study may be targets of genetic engineering of plants that may be employed in biofortification or phytoremediation.

15.
Plant Biotechnol J ; 16(7): 1265-1274, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29205771

RESUMO

Homoeologous exchanges (HEs) have been shown to generate novel gene combinations and phenotypes in a range of polyploid species. Gene presence/absence variation (PAV) is also a major contributor to genetic diversity. In this study, we show that there is an association between these two events, particularly in recent Brassica napus synthetic accessions, and that these represent a novel source of genetic diversity, which can be captured for the improvement of this important crop species. By assembling the pangenome of B. napus, we show that 38% of the genes display PAV behaviour, with some of these variable genes predicted to be involved in important agronomic traits including flowering time, disease resistance, acyl lipid metabolism and glucosinolate metabolism. This study is a first and provides a detailed characterization of the association between HEs and PAVs in B. napus at the pangenome level.


Assuntos
Brassica napus/genética , Conversão Gênica/genética , Genes de Plantas/genética , Diploide , Deleção de Genes , Duplicação Gênica , Variação Genética/genética , Genoma de Planta/genética , Característica Quantitativa Herdável
16.
Nat Commun ; 8(1): 1279, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29093472

RESUMO

Sex chromosomes evolved from autosomes many times across the eukaryote phylogeny. Several models have been proposed to explain this transition, some involving male and female sterility mutations linked in a region of suppressed recombination between X and Y (or Z/W, U/V) chromosomes. Comparative and experimental analysis of a reference genome assembly for a double haploid YY male garden asparagus (Asparagus officinalis L.) individual implicates separate but linked genes as responsible for sex determination. Dioecy has evolved recently within Asparagus and sex chromosomes are cytogenetically identical with the Y, harboring a megabase segment that is missing from the X. We show that deletion of this entire region results in a male-to-female conversion, whereas loss of a single suppressor of female development drives male-to-hermaphrodite conversion. A single copy anther-specific gene with a male sterile Arabidopsis knockout phenotype is also in the Y-specific region, supporting a two-gene model for sex chromosome evolution.


Assuntos
Arabidopsis/genética , Asparagus (Planta)/genética , Cromossomos de Plantas/genética , Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Evolução Molecular , Genoma de Planta , Organismos Hermafroditas/genética , Infertilidade das Plantas/genética
17.
Sci Rep ; 7(1): 13528, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051622

RESUMO

The past few years have witnessed a paradigm shift in molecular systematics from phylogenetic methods (using one or a few genes) to those that can be described as phylogenomics (phylogenetic inference with entire genomes). One approach that has recently emerged is phylo-transcriptomics (transcriptome-based phylogenetic inference). As in any phylogenetics experiment, accurate orthology inference is critical to phylo-transcriptomics. To date, most analyses have inferred orthology based either on pure sequence similarity or using gene-tree approaches. The use of conserved genome synteny in orthology detection has been relatively under-employed in phylogenetics, mainly due to the cost of sequencing genomes. While current trends focus on the quantity of genes included in an analysis, the use of synteny is likely to improve the quality of ortholog inference. In this study, we combine de novo transcriptome data and sequenced genomes from an economically important group of grass species, the tribe Paniceae, to make phylogenomic inferences. This method, which we call "genome-guided phylo-transcriptomics", is compared to other recently published orthology inference pipelines, and benchmarked using a set of sequenced genomes from across the grasses. These comparisons provide a framework for future researchers to evaluate the costs and benefits of adding sequenced genomes to transcriptome data sets.


Assuntos
Genoma de Planta , Poaceae/genética , Perfilação da Expressão Gênica , Filogenia , Poaceae/classificação , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Análise de Sequência de RNA
18.
Front Plant Sci ; 8: 1488, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900436

RESUMO

The rapidly falling costs and the increasing availability of large DNA sequence data sets facilitate the fast and affordable mining of large molecular markers data sets for comprehensive evolutionary studies. The Brassicaceae (mustards) are an important species-rich family in the plant kingdom with taxa distributed worldwide and a complex evolutionary history. We performed Simple Sequence Repeats (SSRs) mining using de novo assembled transcriptomes from 19 species across the Brassicaceae in order to study SSR evolution and provide comprehensive sets of molecular markers for genetic studies within the family. Moreover, we selected the genus Cochlearia to test the transferability and polymorphism of these markers among species. Additionally, we annotated Cochlearia pyrenaica transcriptome in order to identify the position of each of the mined SSRs. While we introduce a new set of tools that will further enable evolutionary studies across the Brassicaceae, we also discuss some broader aspects of SSR evolution. Overall, we developed 2012 ready-to-use SSR markers with their respective primers in 19 Brassicaceae species and a high quality annotated transcriptome for C. pyrenaica. As indicated by our transferability test with the genus Cochlearia these SSRs are transferable to species within the genus increasing exponentially the number of targeted species. Also, our polymorphism results showed substantial levels of variability for these markers. Finally, despite its complex evolutionary history, SSR evolution across the Brassicaceae family is highly conserved and we found no deviation from patterns reported in other Angiosperms.

19.
Plant Cell ; 29(9): 2150-2167, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28814644

RESUMO

Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant, having retained more genes and being more highly expressed, a phenomenon termed subgenome dominance. The genomic features that determine how quickly and which subgenome dominates within a newly formed polyploid remain poorly understood. To investigate the rate of emergence of subgenome dominance, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural, <140-year-old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and progenitor species (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of divergent genomes and significantly increases over generations. Additionally, CHH methylation levels are reduced in regions near genes and within TEs in the first-generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and recessive subgenomes in the natural allopolyploid. Subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following hybridization. These findings provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events and may also contribute to uncovering the mechanistic basis of heterosis and subgenome dominance.


Assuntos
Genoma de Planta , Hibridização Genética , Mimulus/genética , Poliploidia , Metilação de DNA/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Filogenia , Especificidade da Espécie
20.
Am J Bot ; 104(7): 1042-1054, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28743759

RESUMO

PREMISE OF THE STUDY: The Irano-Turanian region harbors three biodiversity hotspots and ∼25% of Brassicaceae species are endemic to the region. Aethionema (∼61 species) is the sister lineage to the core Brassicaceae and occurs mainly in the Irano-Turanian region. The evolutionary important position of Aethionema makes it an ideal reference for broader comparative genetics and genomics. To understand the evolution of Aethionema, and for a broader understanding of crucifer evolution, a time-calibrated phylogenetic tree and biogeographical history of the genus is needed. METHODS: Seventy-six plastome coding regions and nuclear rDNA genes, mainly from herbarium material, covering 75% of all Aethionema species, were used to resolve a time-calibrated Aethionema phylogeny. The different clades were characterized based on four morphological characters. The ancestral area of Aethionema was estimated with historical biogeographical analyses. KEY RESULTS: Three well-supported major clades within Aethionema were resolved. The ancestral area reconstruction and divergence-time estimates are consistent with major dispersal events during the Pliocene from the Anatolian Diagonal. CONCLUSIONS: We find that most Aethionema lineages originated along the Anatolian Diagonal, a floristic bridge connecting the east to the west, during the Pliocene. The dispersal of Aethionema correlates with the local geological events, such as the uplift of the Anatolian and Iranian plateaus and the formation of the major mountain ranges of the Irano-Turanian region. Knowing the paleo-ecological context for the evolution of Aethionema, in addition to the other lineages of Brassicaceae, facilitates our broader understanding for trait evolution and species diversification across the Brassicaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA