Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
Am J Hum Genet ; 105(3): 509-525, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31422817

RESUMO

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.

2.
BMC Med Genomics ; 12(1): 105, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288860

RESUMO

BACKGROUND: Nicolaides-Baraitser syndrome (NCBRS) is a neurodevelopmental disorder caused by pathogenic sequence variants in SMARCA2 which encodes the catalytic component of the chromatin remodeling BAF complex. Pathogenic variants in genes that encode epigenetic regulators have been associated with genome-wide changes in DNA methylation (DNAm) in affected individuals termed DNAm signatures. METHODS: Genome-wide DNAm was assessed in whole-blood samples from the individuals with pathogenic SMARCA2 variants and NCBRS diagnosis (n = 8) compared to neurotypical controls (n = 23) using the Illumina MethylationEPIC array. Differential methylated CpGs between groups (DNAm signature) were identified and used to generate a model enabling classification variants of uncertain significance (VUS; n = 9) in SMARCA2 as "pathogenic" or "benign". A validation cohort of NCBRS cases (n = 8) and controls (n = 96) demonstrated 100% model sensitivity and specificity. RESULTS: We identified a DNAm signature of 429 differentially methylated CpG sites in individuals with NCBRS. The genes to which these CpG sites map are involved in cell differentiation, calcium signaling, and neuronal function consistent with NCBRS pathophysiology. DNAm model classifications of VUS were concordant with the clinical phenotype; those within the SMARCA2 ATPase/helicase domain classified as "pathogenic". A patient with a mild neurodevelopmental NCBRS phenotype and a VUS distal to the ATPase/helicase domain did not score as pathogenic, clustering away from cases and controls. She demonstrated an intermediate DNAm profile consisting of one subset of signature CpGs with methylation levels characteristic of controls and another characteristic of NCBRS cases; each mapped to genes with ontologies consistent with the patient's unique clinical presentation. CONCLUSIONS: Here we find that a DNAm signature of SMARCA2 pathogenic variants in NCBRS maps to CpGs relevant to disorder pathophysiology, classifies VUS, and is sensitive to the position of the variant in SMARCA2. The patient with an intermediate model score demonstrating a unique genotype-epigenotype-phenotype correlation underscores the potential utility of this signature as a functionally relevant VUS classification system scalable beyond binary "benign" versus "pathogenic" scoring. This is a novel feature of DNAm signatures that could enable phenotypic predictions from genotype data. Our findings also demonstrate that DNAm signatures can be domain-specific, highlighting the precision with which they can reflect genotypic variation.

3.
Hum Mutat ; 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184401

RESUMO

The X-linked NLGN3 gene, encoding a postsynaptic cell adhesion molecule, was involved in a nonsyndromic monogenic form of autism spectrum disorder (ASD) by the description of one unique missense variant, p.Arg451Cys (Jamain et al. 2003). We investigated here the pathogenicity of additional missense variants identified in two multiplex families with intellectual disability (ID) and ASD: c.1789C>T, p.Arg597Trp, previously reported by our group (Redin et al. 2014) and present in three affected cousins and c.1540C>T, p.Pro514Ser, identified in two affected brothers. Overexpression experiments in HEK293 and HeLa cell lines revealed that both variants affect the level of the mature NLGN3 protein, its localization at the plasma membrane and its presence as a cleaved form in the extracellular environment, even more drastically than what was reported for the initial p.Arg451Cys mutation. The variants also induced an unfolded protein response, probably due to the retention of immature NLGN3 proteins in the endoplasmic reticulum. In comparison, the c.1894A>G, p.Ala632Thr and c.1022T>C, p.Val341Ala variants, present in males from the general population, have no effect. Our report of two missense variants affecting the normal localization of NLGN3 in a total of five affected individuals reinforces the involvement of the NLGN3 gene in a neurodevelopmental disorder characterized by ID and ASD.

4.
Mol Psychiatry ; 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104728

RESUMO

Early-onset neurodevelopmental conditions (e.g., autism) affect males more frequently than females. Androgens may play a role in this male-bias by sex-differentially impacting early prenatal brain development, particularly neural circuits that later develop specialized roles in social cognition. Here, we find that increasing prenatal testosterone in humans is associated with later reduction of functional connectivity between social brain default mode (DMN) subsystems in adolescent males, but has no effect in females. Since testosterone can work directly via the androgen receptor (AR) or indirectly via the estrogen receptor through aromatase conversion to estradiol, we further examined how a potent non-aromatizable androgen, dihydrotestosterone (DHT), acts via the AR to influence gene expression in human neural stem cells (hNSC)-particularly for genes of high-relevance for DMN circuitry. DHT dysregulates a number of genes enriched for syndromic causes of autism and intellectual disability and for genes that in later development are expressed in anatomical patterns that highly correspond to the cortical midline DMN subsystem. DMN-related and DHT-affected genes (e.g., MEF2C) are involved in a number of synaptic processes, many of which impact excitation-inhibition balance. Androgens have male-specific prenatal influence over social brain circuitry in humans and may be relevant towards explaining some component of male-bias in early-onset neurodevelopmental conditions.

5.
Mol Metab ; 13: 1-9, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29784605

RESUMO

OBJECTIVE: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step. METHODS: CoDE-seq is based on an augmented WES method, using probes distributed uniformly throughout the genome. CoDE-seq was validated in 40 patients for whom chromosomal DNA microarray was available. CNVs and mutations were assessed in 82 children/young adults with suspected Mendelian obesity and/or intellectual disability and in their parents when available (ntotal = 145). RESULTS: CoDE-seq not only detected all of the 97 CNVs identified by chromosomal DNA microarrays but also found 84 additional CNVs, due to a better resolution. When compared to CoDE-seq and chromosomal DNA microarrays, WES failed to detect 37% and 14% of CNVs, respectively. In the 82 patients, a likely molecular diagnosis was achieved in >30% of the patients. Half of the genetic diagnoses were explained by CNVs while the other half by mutations. CONCLUSIONS: CoDE-seq has proven cost-efficient and highly effective as it avoids the sequential genetic screening approaches currently used in clinical practice for the accurate detection of CNVs and point mutations.

6.
Eur J Hum Genet ; 26(7): 996-1006, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29695756

RESUMO

High-throughput sequencing (HTS) of human genome coding regions allows the simultaneous screen of a large number of genes, significantly improving the diagnosis of non-syndromic intellectual disabilities (ID). HTS studies permit the redefinition of the phenotypical spectrum of known disease-causing genes, escaping the clinical inclusion bias of gene-by-gene Sanger sequencing. We studied a cohort of 903 patients with ID not reminiscent of a well-known syndrome, using an ID-targeted HTS of several hundred genes and found de novo heterozygous variants in TCF4 (transcription factor 4) in eight novel patients. Piecing together the patients from this study and those from previous large-scale unbiased HTS studies, we estimated the rate of individuals with ID carrying a disease-causing TCF4 mutation to 0.7%. So far, TCF4 molecular abnormalities were known to cause a syndromic form of ID, Pitt-Hopkins syndrome (PTHS), which combines severe ID, developmental delay, absence of speech, behavioral and ventilation disorders, and a distinctive facial gestalt. Therefore, we reevaluated ten patients carrying a pathogenic or likely pathogenic variant in TCF4 (eight patients included in this study and two from our previous ID-HTS study) for PTHS criteria defined by Whalen and Marangi. A posteriori, five patients had a score highly evocative of PTHS, three were possibly consistent with this diagnosis, and two had a score below the defined PTHS threshold. In conclusion, these results highlight TCF4 as a frequent cause of moderate to profound ID and broaden the clinical spectrum associated to TCF4 mutations to nonspecific ID.

7.
Bioinformatics ; 34(20): 3572-3574, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29669011

RESUMO

Summary: Structural Variations (SV) are a major source of variability in the human genome that shaped its actual structure during evolution. Moreover, many human diseases are caused by SV, highlighting the need to accurately detect those genomic events but also to annotate them and assist their biological interpretation. Therefore, we developed AnnotSV that compiles functionally, regulatory and clinically relevant information and aims at providing annotations useful to (i) interpret SV potential pathogenicity and (ii) filter out SV potential false positive. In particular, AnnotSV reports heterozygous and homozygous counts of single nucleotide variations (SNVs) and small insertions/deletions called within each SV for the analyzed patients, this genomic information being extremely useful to support or question the existence of an SV. We also report the computed allelic frequency relative to overlapping variants from DGV (MacDonald et al., 2014), that is especially powerful to filter out common SV. To delineate the strength of AnnotSV, we annotated the 4751 SV from one sample of the 1000 Genomes Project, integrating the sample information of four million of SNV/indel, in less than 60 s. Availability and implementation: AnnotSV is implemented in Tcl and runs in command line on all platforms. The source code is available under the GNU GPL license. Source code, README and Supplementary data are available at http://lbgi.fr/AnnotSV/. Supplementary information: Supplementary data are available at Bioinformatics online.

8.
Biol Psychiatry ; 84(4): 239-252, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428674

RESUMO

BACKGROUND: Prenatal exposure to androgens during brain development in male individuals may participate to increase their susceptibility to develop neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. However, little is known about the action of androgens in human neural cells. METHODS: We used human neural stem cells differentiated from embryonic stem cells to investigate targets of androgens. RESULTS: RNA sequencing revealed that treatment with dihydrotestosterone (DHT) leads to subtle but significant changes in the expression of about 200 genes, encoding proteins of extracellular matrix or involved in signal transduction of growth factors (e.g., insulin/insulin growth factor 1). We showed that the most differentially expressed genes (DEGs), RGCC, RNF144B, NRCAM, TRIM22, FAM107A, IGFBP5, and LAMA2, are reproducibly regulated by different androgens in different genetic backgrounds. We showed, by overexpressing the androgen receptor in neuroblastoma cells SH-SY5Y or knocking it down in human neural stem cells, that this regulation involves the androgen receptor. A chromatin immunoprecipitation combined with direct sequencing analysis identified androgen receptor-bound sequences in nearly half of the DHT-DEGs and in numerous other genes. DHT-DEGs appear enriched in genes involved in ASD (ASXL3, NLGN4X, etc.), associated with ASD (NRCAM), or differentially expressed in patients with ASD (FAM107A, IGFBP5). Androgens increase human neural stem cell proliferation and survival in nutrient-deprived culture conditions, with no detectable effect on regulation of neurite outgrowth. CONCLUSIONS: We characterized androgen action in neural progenitor cells, identifying DHT-DEGs that appear to be enriched in genes related to ASD. We also showed that androgens increase proliferation of neuronal precursors and protect them from death during their differentiation in nutrient-deprived conditions.

9.
Epilepsia ; 59(2): 389-402, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29315614

RESUMO

OBJECTIVE: Pathogenic SLC6A1 variants were recently described in patients with myoclonic atonic epilepsy (MAE) and intellectual disability (ID). We set out to define the phenotypic spectrum in a larger cohort of SCL6A1-mutated patients. METHODS: We collected 24 SLC6A1 probands and 6 affected family members. Four previously published cases were included for further electroclinical description. In total, we reviewed the electroclinical data of 34 subjects. RESULTS: Cognitive development was impaired in 33/34 (97%) subjects; 28/34 had mild to moderate ID, with language impairment being the most common feature. Epilepsy was diagnosed in 31/34 cases with mean onset at 3.7 years. Cognitive assessment before epilepsy onset was available in 24/31 subjects and was normal in 25% (6/24), and consistent with mild ID in 46% (11/24) or moderate ID in 17% (4/24). Two patients had speech delay only, and 1 had severe ID. After epilepsy onset, cognition deteriorated in 46% (11/24) of cases. The most common seizure types were absence, myoclonic, and atonic seizures. Sixteen cases fulfilled the diagnostic criteria for MAE. Seven further patients had different forms of generalized epilepsy and 2 had focal epilepsy. Twenty of 31 patients became seizure-free, with valproic acid being the most effective drug. There was no clear-cut correlation between seizure control and cognitive outcome. Electroencephalography (EEG) findings were available in 27/31 patients showing irregular bursts of diffuse 2.5-3.5 Hz spikes/polyspikes-and-slow waves in 25/31. Two patients developed an EEG pattern resembling electrical status epilepticus during sleep. Ataxia was observed in 7/34 cases. We describe 7 truncating and 18 missense variants, including 4 recurrent variants (Gly232Val, Ala288Val, Val342Met, and Gly362Arg). SIGNIFICANCE: Most patients carrying pathogenic SLC6A1 variants have an MAE phenotype with language delay and mild/moderate ID before epilepsy onset. However, ID alone or associated with focal epilepsy can also be observed.


Assuntos
Epilepsias Mioclônicas/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Deficiência Intelectual/fisiopatologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Adolescente , Adulto , Anticonvulsivantes/uso terapêutico , Ataxia/complicações , Ataxia/genética , Ataxia/fisiopatologia , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/tratamento farmacológico , Epilepsias Mioclônicas/genética , Epilepsias Parciais/complicações , Epilepsias Parciais/tratamento farmacológico , Epilepsias Parciais/genética , Epilepsias Parciais/fisiopatologia , Epilepsia Generalizada/complicações , Epilepsia Generalizada/tratamento farmacológico , Epilepsia Generalizada/genética , Epilepsia Generalizada/fisiopatologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Mutação , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Resultado do Tratamento , Ácido Valproico/uso terapêutico , Adulto Jovem
10.
Proc Natl Acad Sci U S A ; 114(44): E9308-E9317, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078390

RESUMO

The family of WD40-repeat (WDR) proteins is one of the largest in eukaryotes, but little is known about their function in brain development. Among 26 WDR genes assessed, we found 7 displaying a major impact in neuronal morphology when inactivated in mice. Remarkably, all seven genes showed corpus callosum defects, including thicker (Atg16l1, Coro1c, Dmxl2, and Herc1), thinner (Kif21b and Wdr89), or absent corpus callosum (Wdr47), revealing a common role for WDR genes in brain connectivity. We focused on the poorly studied WDR47 protein sharing structural homology with LIS1, which causes lissencephaly. In a dosage-dependent manner, mice lacking Wdr47 showed lethality, extensive fiber defects, microcephaly, thinner cortices, and sensory motor gating abnormalities. We showed that WDR47 shares functional characteristics with LIS1 and participates in key microtubule-mediated processes, including neural stem cell proliferation, radial migration, and growth cone dynamics. In absence of WDR47, the exhaustion of late cortical progenitors and the consequent decrease of neurogenesis together with the impaired survival of late-born neurons are likely yielding to the worsening of the microcephaly phenotype postnatally. Interestingly, the WDR47-specific C-terminal to LisH (CTLH) domain was associated with functions in autophagy described in mammals. Silencing WDR47 in hypothalamic GT1-7 neuronal cells and yeast models independently recapitulated these findings, showing conserved mechanisms. Finally, our data identified superior cervical ganglion-10 (SCG10) as an interacting partner of WDR47. Taken together, these results provide a starting point for studying the implications of WDR proteins in neuronal regulation of microtubules and autophagy.


Assuntos
Autofagia/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Repetições WD40/fisiologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Neurogênese/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Fenótipo , Células-Tronco/metabolismo , Células-Tronco/fisiologia
11.
PLoS Genet ; 13(8): e1006957, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859103

RESUMO

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


Assuntos
Regulação da Expressão Gênica/genética , Hipotálamo/fisiologia , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Fatores de Transcrição/genética , Adulto , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Criança , Deleção Cromossômica , Cromossomos Humanos Par 2/genética , Feminino , Técnicas de Inativação de Genes , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Peixe-Zebra
12.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250454

RESUMO

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Assuntos
Agenesia do Corpo Caloso/genética , Deficiências do Desenvolvimento/genética , Mutação/genética , Receptores de Superfície Celular/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/genética , Encéfalo/patologia , Corpo Caloso/patologia , Receptor DCC , Família , Feminino , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Células-Tronco Neurais/patologia , Penetrância , Fenótipo
13.
Eur J Hum Genet ; 25(4): 423-431, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28176767

RESUMO

Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5'-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo variant c.990+1G>A (family 2) and a maternally inherited c.420-8A>G variant (family 3). After clinical reevaluation, the five patients presented features consistent with FXS (mean Hagerman's scores=15). We conducted a systematic review of all rare non-synonymous variants previously reported in FMR1 in ID patients and showed that six of them are convincing pathogenic variants. This study suggests that intragenic FMR1 variants, although much less frequent than CGG expansions, are a significant mutational mechanism leading to FXS and demonstrates the interest of HTS approaches to detect them in ID patients with a negative standard work-up.


Assuntos
Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Mutação , Feminino , Síndrome do Cromossomo X Frágil/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Processamento de RNA , Irmãos
14.
Am J Hum Genet ; 100(1): 105-116, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27939639

RESUMO

Intellectual disability (ID) is a common neurodevelopmental disorder exhibiting extreme genetic heterogeneity, and more than 500 genes have been implicated in Mendelian forms of ID. We performed exome sequencing in a large family affected by an autosomal-dominant form of mild syndromic ID with ptosis, growth retardation, and hypotonia, and we identified an inherited 2 bp deletion causing a frameshift in BRPF1 (c.1052_1053del) in five affected family members. BRPF1 encodes a protein modifier of two histone acetyltransferases associated with ID: KAT6A (also known as MOZ or MYST3) and KAT6B (MORF or MYST4). The mRNA transcript was not significantly reduced in affected fibroblasts and most likely produces a truncated protein (p.Val351Glyfs∗8). The protein variant shows an aberrant cellular location, loss of certain protein interactions, and decreased histone H3K23 acetylation. We identified BRPF1 deletions or point mutations in six additional individuals with a similar phenotype. Deletions of the 3p25 region, containing BRPF1 and SETD5, cause a defined ID syndrome where most of the clinical features are attributed to SETD5 deficiency. We compared the clinical symptoms of individuals carrying mutations or small deletions of BRPF1 alone or SETD5 alone with those of individuals with deletions encompassing both BRPF1 and SETD5. We conclude that both genes contribute to the phenotypic severity of 3p25 deletion syndrome but that some specific features, such as ptosis and blepharophimosis, are mostly driven by BRPF1 haploinsufficiency.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Blefaroptose/genética , Genes Dominantes/genética , Histona Acetiltransferases/metabolismo , Deficiência Intelectual/genética , Mutação , Proteínas Nucleares/genética , Acetilação , Adulto , Blefarofimose/genética , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 3/genética , Feminino , Mutação da Fase de Leitura , Haploinsuficiência/genética , Humanos , Masculino , Metiltransferases/deficiência , Metiltransferases/genética , Hipotonia Muscular/genética , Fenótipo , Síndrome
15.
Epilepsia ; 57(11): 1858-1869, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27665735

RESUMO

OBJECTIVE: IQSEC2 is an X-linked gene associated with intellectual disability (ID) and epilepsy. Herein we characterize the epilepsy/epileptic encephalopathy of patients with IQSEC2 pathogenic variants. METHODS: Forty-eight patients with IQSEC2 variants were identified worldwide through Medline search. Two patients were recruited from our early onset epileptic encephalopathy cohort and one patient from personal communication. The 18 patients who have epilepsy in addition to ID are the subject of this study. Information regarding the 18 patients was ascertained by questionnaire provided to the treating clinicians. RESULTS: Six affected individuals had an inherited IQSEC2 variant and 12 had a de novo one (male-to-female ratio, 12:6). The pathogenic variant types were as follows: missense (8), nonsense (5), frameshift (1), intragenic duplications (2), translocation (1), and insertion (1). An epileptic encephalopathy was diagnosed in 9 (50%) of 18 patients. Seizure onset ranged from 8 months to 4 years; seizure types included spasms, atonic, myoclonic, tonic, absence, focal seizures, and generalized tonic-clonic (GTC) seizures. The electroclinical syndromes could be defined in five patients: late-onset epileptic spasms (three) and Lennox-Gastaut or Lennox-Gastaut-like syndrome (two). Seizures were pharmacoresistant in all affected individuals with epileptic encephalopathy. The epilepsy in the other nine patients had a variable age at onset from infancy to 18 years; seizure types included GTC and absence seizures in the hereditary cases and GTC and focal seizures in de novo cases. Seizures were responsive to medical treatment in most cases. All 18 patients had moderate to profound intellectual disability. Developmental regression, autistic features, hypotonia, strabismus, and white matter changes on brain magnetic resonance imaging (MRI) were prominent features. SIGNIFICANCE: The phenotypic spectrum of IQSEC2 disorders includes epilepsy and epileptic encephalopathy. Epileptic encephalopathy is a main clinical feature in sporadic cases. IQSEC2 should be evaluated in both male and female patients with an epileptic encephalopathy.


Assuntos
Epilepsia/genética , Epilepsia/fisiopatologia , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Feminino , Estudos de Associação Genética , Humanos , Imagem por Ressonância Magnética , Masculino , Fenótipo , Adulto Jovem
16.
Am J Med Genet A ; 170(8): 2103-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256868

RESUMO

Using targeted next generation sequencing, we have identified a splicing mutation (c.526-9_526-5del) in the SLC9A6 gene in a 9-year-old boy with mild intellectual disability (ID), microcephaly, and social interaction disabilities. This intronic microdeletion leads to the skipping of exon 3 and to an in-frame deletion of 26 amino acids in the TM4 domain. It segregates with cognitive impairment or learning difficulties in other members of the family. Mutations in SLC9A6 have been reported in X-linked Christianson syndrome associating severe to profound intellectual deficiency and an Angelman-like phenotype with microcephaly, absent speech, ataxia with progressive cerebellar atrophy, ophthalmoplegia, epilepsy, and neurological regression. The proband and his maternal uncle both have an attenuated phenotype with mild ID, attention deficit disorder, speech difficulties, and mild asymptomatic cerebellar atrophy. The proband also have microcephaly. The mutation cosegregated with learning disabilities and speech difficulties in the female carriers (mother and three sisters of the proband). Detailed neuropsychological, speech, and occupational therapy investigations in the female carriers revealed impaired oral and written language acquisition, with dissociation between verbal and performance IQ. An abnormal phenotype, ranging from learning disability with predominant speech difficulties to mild intellectual deficiency, has been described previously in a large proportion of female carriers. Besides broadening the clinical spectrum of SLC9A6 gene mutations, we present an example of a monogenic origin of mild learning disability. © 2016 Wiley Periodicals, Inc.


Assuntos
Ataxia/diagnóstico , Ataxia/genética , Epilepsia/diagnóstico , Epilepsia/genética , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/genética , Fenótipo , Trocadores de Sódio-Hidrogênio/genética , Adolescente , Adulto , Encéfalo/anormalidades , Criança , Análise Mutacional de DNA , Facies , Família , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Imagem por Ressonância Magnética , Masculino , Linhagem , Sítios de Splice de RNA , Deleção de Sequência , Inativação do Cromossomo X
17.
Neurology ; 86(23): 2171-8, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164704

RESUMO

OBJECTIVE: To determine the phenotypic spectrum caused by mutations in GRIN1 encoding the NMDA receptor subunit GluN1 and to investigate their underlying functional pathophysiology. METHODS: We collected molecular and clinical data from several diagnostic and research cohorts. Functional consequences of GRIN1 mutations were investigated in Xenopus laevis oocytes. RESULTS: We identified heterozygous de novo GRIN1 mutations in 14 individuals and reviewed the phenotypes of all 9 previously reported patients. These 23 individuals presented with a distinct phenotype of profound developmental delay, severe intellectual disability with absent speech, muscular hypotonia, hyperkinetic movement disorder, oculogyric crises, cortical blindness, generalized cerebral atrophy, and epilepsy. Mutations cluster within transmembrane segments and result in loss of channel function of varying severity with a dominant-negative effect. In addition, we describe 2 homozygous GRIN1 mutations (1 missense, 1 truncation), each segregating with severe neurodevelopmental phenotypes in consanguineous families. CONCLUSIONS: De novo GRIN1 mutations are associated with severe intellectual disability with cortical visual impairment as well as oculomotor and movement disorders being discriminating phenotypic features. Loss of NMDA receptor function appears to be the underlying disease mechanism. The identification of both heterozygous and homozygous mutations blurs the borders of dominant and recessive inheritance of GRIN1-associated disorders.


Assuntos
Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Estudos de Coortes , Consanguinidade , Heterozigoto , Homozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/metabolismo , Oócitos , Fenótipo , Convulsões/genética , Convulsões/metabolismo , Xenopus laevis
18.
Am J Med Genet A ; 170(6): 1626-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27061120

RESUMO

The cardinal features of Primrose syndrome (MIM 259050) are dysmorphic facial features, macrocephaly, and intellectual disability, as well as large body size, height and weight, and calcified pinnae. A variety of neurological signs and symptoms have been reported including hearing loss, autism, behavioral abormalities, hypotonia, cerebral calcifications, and hypoplasia of the corpus callosum. Recently, heterozygous de novo missense mutations in ZBTB20, coding for a zing finger protein, have been identified in Primrose syndrome patients. We report a boy with intellectual disability carrying two de novo missense mutations in the last exon of ZBTB20 (Ser616Phe and Gly741Arg; both previously unreported). One of them, Ser616Phe, affects an amino acid located in one of the C2H2 zing-fingers involved in DNA-binding and close to other missense mutations already described. Reverse phenotyping showed that this patient presents with classic features of Primrose syndrome (dysmorphic facies, macrocephaly, hearing loss, hypotonia, hypoplasia of the corpus callosum) and, in addition, congenital hypothyroidism. Review of the literature reveals another Primrose syndrome patient with hypothyroidism and thus, this may represent an under recognized component that should be investigated in other patients. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Calcinose/diagnóstico , Calcinose/genética , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Otopatias/diagnóstico , Otopatias/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Biomarcadores , Hibridização Genômica Comparativa , Facies , Estudos de Associação Genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Linhagem , Fenótipo
19.
Hum Mutat ; 37(8): 755-64, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27094817

RESUMO

N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal germ line mosaicism in another girl and her more severely affected and deceased brother. In vitro enzymatic assays for the novel, recurrent mutations p.(Arg83Cys) and p.(Phe128Leu) revealed reduced catalytic activity. X-inactivation was random in five females. The core phenotype of X-linked NAA10-related N-terminal-acetyltransferase deficiency in both males and females includes developmental delay, severe intellectual disability, postnatal growth failure with severe microcephaly, and skeletal or cardiac anomalies. Genotype-phenotype correlations within and between both genders are complex and may include various factors such as location and nature of mutations, enzymatic stability and activity, and X-inactivation in females.


Assuntos
Mutação em Linhagem Germinativa , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal E/deficiência , Acetilação , Feminino , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Modelos Moleculares , Mosaicismo , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/química , Acetiltransferase N-Terminal E/genética , Linhagem
20.
Am J Hum Genet ; 98(3): 541-552, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942287

RESUMO

Intellectual disability (ID) and autism spectrum disorders (ASD) are genetically heterogeneous, and a significant number of genes have been associated with both conditions. A few mutations in POGZ have been reported in recent exome studies; however, these studies do not provide detailed clinical information. We collected the clinical and molecular data of 25 individuals with disruptive mutations in POGZ by diagnostic whole-exome, whole-genome, or targeted sequencing of 5,223 individuals with neurodevelopmental disorders (ID primarily) or by targeted resequencing of this locus in 12,041 individuals with ASD and/or ID. The rarity of disruptive mutations among unaffected individuals (2/49,401) highlights the significance (p = 4.19 × 10(-13); odds ratio = 35.8) and penetrance (65.9%) of this genetic subtype with respect to ASD and ID. By studying the entire cohort, we defined common phenotypic features of POGZ individuals, including variable levels of developmental delay (DD) and more severe speech and language delay in comparison to the severity of motor delay and coordination issues. We also identified significant associations with vision problems, microcephaly, hyperactivity, a tendency to obesity, and feeding difficulties. Some features might be explained by the high expression of POGZ, particularly in the cerebellum and pituitary, early in fetal brain development. We conducted parallel studies in Drosophila by inducing conditional knockdown of the POGZ ortholog row, further confirming that dosage of POGZ, specifically in neurons, is essential for normal learning in a habituation paradigm. Combined, the data underscore the pathogenicity of loss-of-function mutations in POGZ and define a POGZ-related phenotype enriched in specific features.


Assuntos
Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Transposases/genética , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Regulação para Baixo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Transtornos do Desenvolvimento da Linguagem/genética , Modelos Lineares , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Mutação , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA