Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Nat Mater ; 11(7): 585-9, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22561901


A complicating factor in unravelling the theory of high-temperature (high-T(c)) superconductivity is the presence of a 'pseudogap' in the density of states, the origin of which has been debated since its discovery. Some believe the pseudogap is a broken symmetry state distinct from superconductivity, whereas others believe it arises from short-range correlations without symmetry breaking. A number of broken symmetries have been imaged and identified with the pseudogap state, but it remains crucial to disentangle any electronic symmetry breaking from the pre-existing structural symmetry of the crystal. We use scanning tunnelling microscopy to observe an orthorhombic structural distortion across the cuprate superconducting Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4+x) (BSCCO) family tree, which breaks two-dimensional inversion symmetry in the surface BiO layer. Although this inversion-symmetry-breaking structure can impact electronic measurements, we show from its insensitivity to temperature, magnetic field and doping, that it cannot be the long-sought pseudogap state. To detect this picometre-scale variation in lattice structure, we have implemented a new algorithm that will serve as a powerful tool in the search for broken symmetry electronic states in cuprates, as well as in other materials.

J Opt Soc Am A Opt Image Sci Vis ; 23(11): 2747-55, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17047700


The sensitivity and dynamic range of optical coherence tomography (OCT) are calculated for instruments utilizing two common interferometer configurations and detection schemes. Previous researchers recognized that the performance of dual-balanced OCT instruments is severely limited by beat noise, which is generated by incoherent light backscattered from the sample. However, beat noise has been ignored in previous calculations of Michelson OCT performance. Our measurements of instrument noise confirm the presence of beat noise even in a simple Michelson interferometer configuration with a single photodetector. Including this noise, we calculate the dynamic range as a function of OCT light source power, and find that instruments employing balanced interferometers and balanced detectors can achieve a sensitivity up to six times greater than those based on a simple Michelson interferometer, thereby boosting image acquisition speed by the same factor for equal image quality. However, this advantage of balanced systems is degraded for source powers greater than a few milliwatts. We trace the concept of beat noise back to an earlier paper.

Artefatos , Desenho Assistido por Computador , Interpretação de Imagem Assistida por Computador/métodos , Tomografia de Coerência Óptica/instrumentação , Tomografia de Coerência Óptica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade