Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Environ Health ; 19(1): 129, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287817

RESUMO

BACKGROUND: The IGF2 (insulin-like growth factor 2) and H19 gene cluster plays an important role during pregnancy as it promotes both foetal and placental growth. We investigated the association between cord blood DNA methylation status of the IGF2/H19 gene cluster and maternal fine particulate matter exposure during fetal life. To the best of our knowledge, this is the first study investigating the association between prenatal PM2.5 exposure and newborn DNA methylation of the IGF2/H19. METHODS: Cord blood DNA methylation status of IGF2/H19 cluster was measured in 189 mother-newborn pairs from the ENVIRONAGE birth cohort (Flanders, Belgium). We assessed the sex-specific association between residential PM2.5 exposure during pregnancy and the methylation level of CpG loci mapping to the IGF2/H19 cluster, and identified prenatal vulnerability by investigating susceptible time windows of exposure. We also addressed the biological functionality of DNA methylation level in the gene cluster. RESULTS: Prenatal PM2.5 exposure was found to have genetic region-specific significant association with IGF2 and H19 during specific gestational weeks. The association was found to be sex-specific in both gene regions. Functionality of the DNA methylation was annotated by the association to fetal growth and cellular pathways. CONCLUSIONS: The results of our study provided evidence that prenatal PM2.5 exposure is associated with DNA methylation in newborns' IGF2/H19. The consequences within the context of fetal development of future phenotyping should be addressed.

2.
J Transl Med ; 18(1): 426, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172470

RESUMO

BACKGROUND: Iodine is an essential trace element for the production of thyroid hormones, and plays a key role during the gestational period for optimal foetal growth and (neuro-)development. To this day, iodine deficiency remains a global burden. Previous studies indicate that the placenta can store iodine in a concentration-dependent manner and serve as a long-term storage supply, but studies on the determinants of long-term placental iodine load are limited. METHODS: The placental iodine concentrations were determined for 462 mother-neonate pairs from the ENVIRONAGE birth cohort (Limburg, Belgium). Sociodemographic and clinical variables were obtained from questionnaires and medical files. Determinants of placental iodine concentration were identified using stepwise multiple regression procedures (p value < 0.15). The biological significance of our findings was investigated by measuring the plasma thyroid hormones in maternal and cord blood of 378 participants. RESULTS: A higher pre-pregnancy BMI, higher gestational weight gain, and alcohol consumption during pregnancy were linked with lower placental iodine storage. Multi-vitamin supplementation during pregnancy and longer gestation were associated with higher levels of placental iodine. Children born during the winter period had on average higher placental iodine levels. Besides, we found a significant positive time trend for placental iodine load over the study period 2013 to 2017. Lastly, we observed positive associations of both the maternal and cord plasma thyroxine concentrations with placental iodine load, emphasizing their biological link. CONCLUSIONS: This study identified some determinants likely presenting a risk of reduced iodine storage during the gestational period of life. Future studies should elucidate the effects of lower placental iodine load on neonatal health, and health later in life.

3.
Environ Sci Technol ; 54(22): 14502-14513, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33124810

RESUMO

Mechanisms underlying adverse birth and later in life health effects from exposure to air pollution during the prenatal period have not been not fully elucidated, especially in the context of mixtures. We assessed the effects of prenatal exposure to mixtures of air pollutants of particulate matter (PM), PM2.5, PM10, nitrogen oxides, NO2, NOx, ultrafine particles (UFP), and oxidative potential (OP) of PM2.5 on infant birthweight in four European birth cohorts and the mechanistic underpinnings through cross-omics of metabolites and inflammatory proteins. The association between mixtures of air pollutants and birthweight z-scores (standardized for gestational age) was assessed for three different mixture models, using Bayesian machine kernel regression (BKMR). We determined the direct effect for PM2.5, PM10, NO2, and mediation by cross-omic signatures (identified using sparse partial least-squares regression) using causal mediation BKMR models. There was a negative association with birthweight z-scores and exposure to mixtures of air pollutants, where up to -0.21 or approximately a 96 g decrease in birthweight, comparing the 75th percentile to the median level of exposure to the air pollutant mixture could occur. Shifts in birthweight z-scores from prenatal exposure to PM2.5, PM10, and NO2 were mediated by molecular mechanisms, represented by cross-omics scores. Interleukin-17 and epidermal growth factor were identified as important inflammatory responses underlyingair pollution-associated shifts in birthweight. Our results signify that by identifying mechanisms through which mixtures of air pollutants operate, the causality of air pollution-associated shifts in birthweight is better supported, substantiating the need for reducing exposure in vulnerable populations.

4.
Environ Res ; 189: 109914, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32980008

RESUMO

BACKGROUND: Living in green environments has been associated with various health benefits, but the evidence for positive effects on respiratory health in children is ambiguous. OBJECTIVE: To investigate if residential exposure to different types of green space is associated with childhood asthma prevalence in Belgium. METHODS: Asthma prevalence was estimated from sales data of reimbursed medication for obstructive airway disease (OAD) prescribed to children between 2010 and 2014, aggregated at census tract level (n = 1872) by sex and age group (6-12 and 13-18 years). Generalized log-linear mixed effects models with repeated measures were used to estimate effects of relative covers of forest, grassland and garden in the census tract of the residence on OAD medication sales. Models were adjusted for air pollution (PM10), housing quality and administrative region. RESULTS: Consistent associations between OAD medication sales and relative covers of grassland and garden were observed (unadjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, ß = 0.15-0.17; garden, ß = 0.13-0.17). The associations remained significant after adjusting for housing quality and chronic air pollution (adjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, ß = 0.10-0.14; garden, ß = 0.07-0.09). There was no association between OAD medication sales and forest cover. CONCLUSIONS: Based on aggregated data, we found that living in close proximity to areas with high grass cover (grasslands, but also residential gardens) may negatively impact child respiratory health. Potential allergic and non-allergic mechanisms that underlie this association include elevated exposure to grass pollen and fungi and reduced exposure to environmental biodiversity. Reducing the dominance of grass in public and private green space might be beneficial to reduce the childhood asthma burden and may simultaneously improve the ecological value of urban green space.

5.
Environ Pollut ; 266(Pt 1): 115261, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745902

RESUMO

Indoor plants can be used to monitor atmospheric particulates. Here, we report the label-free detection of combustion-derived particles (CDPs) on plants as a monitoring tool for indoor pollution. First, we measured the indoor CDP deposition on Atlantic ivy leaves (Hedera hibernica) using two-photon femtosecond microscopy. Subsequently, to prove its effectiveness for using it as a monitoring tool, ivy plants were placed near five different indoor sources. CDP particle area and number were used as output metrics. CDP values ranged between a median particle area of 0.45 × 102 to 1.35 × 104 µm2, and a median particle number of 0.10 × 102 to 1.42 × 10³ particles for the indoor sources: control (greenhouse) < milling machine < indoor smokers < wood stove < gas stove < laser printer. Our findings demonstrate that Atlantic ivy, combined with label-free detection, can be effectively used in indoor atmospheric monitoring studies.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Carvão Mineral , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise
6.
JAMA Netw Open ; 3(7): e2011537, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32706383

RESUMO

Importance: Neurocognitive functions develop rapidly in early childhood and depend on the intrinsic cooperation between cerebral structures and the circulatory system. The retinal microvasculature can be regarded as a mirror image of the cerebrovascular circulation. Objective: To investigate the association between retinal vessel characteristics and neurological functioning in children aged 4 to 5 years. Design, Setting, and Participants: In this cohort study, mother-child pairs were recruited at birth from February 10, 2010, to June 24, 2014, and renewed consent at their follow-up visit from December 10, 2014, to July 13, 2018. Participants were followed up longitudinally within the prospective Environmental Influence on Aging in Early Life birth cohort. A total of 251 children underwent assessment for this study. Data were analyzed from July 17 to October 30, 2019. Main Outcomes and Measures: Retinal vascular diameters, the central retinal arteriolar equivalent (CRAE), central retinal venular equivalent (CRVE), vessel tortuosity, and fractal dimensions were determined. Attention and psychomotor speed, visuospatial working memory, and short-term visual recognition memory were assessed by the Cambridge Neuropsychological Test Automated Battery, including the following tasks: Motor Screening (MOT), Big/Little Circle (BLC), Spatial Span (SSP), and Delayed Matching to Sample (DMS). Results: Among the 251 children included in the assessment (135 girls [53.8%]; mean [SD] age, 4.5 [0.4] years), for every 1-SD widening in CRVE, the children performed relatively 2.74% (95% CI, -0.12 to 5.49; P = .06) slower on the MOT test, had 1.76% (95% CI, -3.53% to -0.04%; P = .04) fewer correct DMS assessments in total, and made 2.94% (95% CI, 0.39 to 5.29; P = .02) more errors given a previous correct answer in the DMS task on multiple linear regression modeling. For every 1-SD widening in CRAE, the total percentage of errors and errors given previous correct answers in the DMS task increased 1.44% (95% CI, -3.25% to 0.29%; P = .09) and 2.30% (95% CI, -0.14% to 4.61%; P = .07), respectively. A 1-SD higher vessel tortuosity showed a 4.32% relative increase in latency in DMS task performance (95% CI, -0.48% to 9.12%; P = .07). Retinal vessel characteristics were not associated with BLC and SSP test outcomes. Conclusions and Relevance: These findings suggest that children's microvascular phenotypes are associated with short-term memory and that changes in the retinal microvasculature may reflect neurological development during early childhood.

7.
Metabolism ; 110: 154292, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32553738

RESUMO

BACKGROUND: Birthweight reflects in utero exposures and later health evolution. Despite existing studies employing high-dimensional molecular measurements, the understanding of underlying mechanisms of birthweight remains limited. METHODS: To investigate the systems biology of birthweight, we cross-sectionally integrated the methylome, the transcriptome, the metabolome and a set of inflammatory proteins measured in cord blood samples, collected from four birth-cohorts (n = 489). We focused on two sets of 68 metabolites and 903 CpGs previously related to birthweight and investigated the correlation structures existing between these two sets and all other omic features via bipartite Pearson correlations. RESULTS: This dataset revealed that the set of metabolome and methylome signatures of birthweight have seven signals in common, including three metabolites [PC(34:2), plasmalogen PC(36:4)/PC(O-36:5), and a compound with m/z of 781.0545], two CpGs (on the DHCR24 and SC4MOL gene), and two proteins (periostin and CCL22). CCL22, a macrophage-derived chemokine has not been previously identified in relation to birthweight. Since the results of the omics integration indicated the central role of cholesterol metabolism, we explored the association of cholesterol levels in cord blood with birthweight in the ENVIRONAGE cohort (n = 1097), finding that higher birthweight was associated with increased high-density lipoprotein cholesterol and that high-density lipoprotein cholesterol was lower in small versus large for gestational age newborns. CONCLUSIONS: Our data suggests that an integration of different omic-layers in addition to single omics studies is a useful approach to generate new hypotheses regarding biological mechanisms. CCL22 and cholesterol metabolism in cord blood play a mechanistic role in birthweight.


Assuntos
Peso ao Nascer , Colesterol/metabolismo , Sangue Fetal/química , Quimiocina CCL22/metabolismo , Estudos Transversais , Feminino , Humanos , Recém-Nascido , Masculino , Metaboloma , Metilação
8.
JAMA Netw Open ; 3(5): e204662, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396192

RESUMO

Importance: Maternal prepregnancy body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) has previously been associated with offspring cardiometabolic risk factors, such as fat mass, glucose and insulin levels, and blood pressure, but these associations appear to be largely mediated by offspring BMI. To our knowledge, no studies have assessed alterations in the retinal microvasculature in association with maternal prepregnancy BMI. Objective: To investigate the association between maternal prepregnancy BMI and anthropometric parameters, blood pressure, and retinal vessel parameters in children age 4 to 6 years. Design, Setting, and Participants: Participants included mother-child pairs of the population-based Environmental Influence on Early Aging (ENVIRONAGE) birth cohort study (Flanders, Belgium) who were recruited at birth from February 2010 to June 2014 and followed-up at age 4 to 6 years between October 2014 and July 2018. Data were analyzed from February 2019 to April 2019. Exposures: Maternal prepregnancy BMI based on height and weight measurements at the first antenatal visit (weeks 7-9 of gestation). Main Outcomes and Measures: Children's anthropometric, blood pressure, and retinal microcirculation measurements at age 4 to 6 years. Retinal vessel diameters and the tortuosity index, a measure for the curvature of the retinal vasculature, were obtained by fundus image analysis. Results: This study included 240 mothers and children with a mean (SD) age of 29. 9 (4.2) years and 54.8 (4.7) months, respectively. Of these, 114 children (47.5%) were boys. Maternal prepregnancy BMI was positively associated with the child's birth weight, BMI, waist circumference, blood pressure, and retinal vessel tortuosity. A 1-point increase in maternal prepregnancy BMI was associated with a 0.26-mm Hg (95% CI, 0.08-0.44) higher mean arterial pressure for their children, with similar estimates for systolic and diastolic blood pressure. Independent from the association with blood pressure, a 1-point increase in maternal prepregnancy BMI was associated with a 0.40 (95% CI, 0.01-0.80) higher retinal tortuosity index (× 103). The hypothesis that these associations reflect direct intrauterine mechanisms is supported by the following observations: associations were independent of the current child's BMI and the estimates for paternal BMI at the follow-up visit did not reach significance. Conclusions and Relevance: Considering that blood pressure tracks from childhood into adulthood and microvascular changes may be early markers of cardiometabolic disease development, our results suggest that maternal prepregnancy BMI is an important modifiable risk factor for later-life cardiovascular health of the offspring.


Assuntos
Mães , Obesidade/complicações , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Retina/fisiologia , Adulto , Pressão Sanguínea , Índice de Massa Corporal , Doenças Cardiovasculares/fisiopatologia , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Microvasos/fisiologia , Gravidez
9.
JAMA Netw Open ; 3(5): e204057, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32364595

RESUMO

Importance: Low socioeconomic status is associated with higher all-cause mortality and risks for aging-related diseases. Biological aging is a potential process underlying health conditions related to social disadvantages, which may be present from birth onward. Objective: To evaluate the association of parental socioeconomic status with telomere length (TL) at birth, a marker of biological aging. Design, Setting, and Participants: This prospective birth cohort study was conducted among 1504 mother-newborn pairs in Belgium recruited between February 1, 2010, and July 1, 2017. Exposures: Parental socioeconomic measures, including maternal educational level, occupation, paternal educational level, and neighborhood income based on median annual household income. Main Outcomes and Measures: Mean relative TL was measured in cord blood and placental tissue. By constructing a principal component, an integrative socioeconomic measure was derived that integrates parental socioeconomic status and neighborhood income. Multivariable adjusted regression analyses were performed to associate the integrative socioeconomic measure and TL at birth. Results: In 1026 newborns (517 boys; mean [SD] gestational age, 39.2 [1.4] weeks), a higher socioeconomic status was associated with longer cord blood TL and placental TL. Each unit increment in the integrative socioeconomic status measure was associated with 2.1% (95% CI, 0.9%-3.4%; P < .001) longer cord blood TL in boys, while no association was observed for girls (0.5% longer cord blood TL; 95% CI, -0.9% to 1.8%; P = .50). The sex-specific socioeconomic status interaction revealed a stronger association in boys compared with newborn girls (1.6%; 95% CI, 0.02%-3.3%; P = .047 for interaction). In placental tissue, higher socioeconomic status was associated with 1.8% (95% CI, 0.3%-3.3%; P = .02) longer TL in newborn boys but not in girls (0.4% longer TL; 95% CI, -1.2% to 2.0%; P = .63). For placental tissue, no sex and socioeconomic status interaction on TL was observed (1.4%; 95% CI, -0.5% to 3.4%; P = .16 for interaction). Conclusions and Relevance: This study suggests that parental socioeconomic status is associated with newborn TL, especially in boys. The results indicate that familial social economic factors are associated with the potential cellular longevity of the next generation, with a potential higher transgenerational vulnerability for newborn boys.


Assuntos
Envelhecimento/genética , Pai , Mães , Adulto , Estudos de Coortes , Grupo com Ancestrais do Continente Europeu/genética , Feminino , Humanos , Recém-Nascido , Masculino , Países Baixos , Gravidez , Estudos Prospectivos , Classe Social , Inquéritos e Questionários , Telômero
10.
BMC Med ; 18(1): 128, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32450864

RESUMO

BACKGROUND: Particulate matter exposure during in utero life may entail adverse health outcomes later in life. The microvasculature undergoes extensive, organ-specific prenatal maturation. A growing body of evidence shows that cardiovascular disease in adulthood is rooted in a dysfunctional fetal and perinatal development, in particular that of the microcirculation. We investigate whether prenatal or postnatal exposure to PM2.5 (particulate matter with a diameter ≤ 2.5 µm) or NO2 is related to microvascular traits in children between the age of four and six. METHODS: We measured the retinal microvascular diameters, the central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE), and the vessel curvature by means of the tortuosity index (TI) in young children (mean [SD] age 4.6 [0.4] years), followed longitudinally within the ENVIRONAGE birth cohort. We modeled daily prenatal and postnatal PM2.5 and NO2 exposure levels for each participant's home address using a high-resolution spatiotemporal model. RESULTS: An interquartile range (IQR) increase in PM2.5 exposure during the entire pregnancy was associated with a 3.85-µm (95% CI, 0.10 to 7.60; p = 0.04) widening of the CRVE and a 2.87-µm (95% CI, 0.12 to 5.62; p = 0.04) widening of the CRAE. For prenatal NO2 exposure, an IQR increase was found to widen the CRVE with 4.03 µm (95% CI, 0.44 to 7.63; p = 0.03) and the CRAE with 2.92 µm (95% CI, 0.29 to 5.56; p = 0.03). Furthermore, a higher TI score was associated with higher prenatal NO2 exposure. We observed a postnatal effect of short-term PM2.5 exposure on the CRAE and a childhood NO2 exposure effect on both the CRVE and CRAE. CONCLUSIONS: Our results link prenatal and postnatal air pollution exposure with changes in a child's microvascular traits as a fundamental novel mechanism to explain the developmental origin of cardiovascular disease.

11.
Genome Med ; 12(1): 25, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32114984

RESUMO

BACKGROUND: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. METHODS: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. RESULTS: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. CONCLUSIONS: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.

12.
Sci Rep ; 10(1): 5107, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198402

RESUMO

Cardiovascular risk factors are usually better tolerated, and can therefore be perceived as less harmful, at a young age. However, over time the effects of these adverse factors may persist or accumulate and lead to excess morbidity and mortality from cardiovascular diseases later in life. Until now, reference values for the basic cardiovascular health characteristics of 4-to-6 year-old children are lacking. Within a follow-up study of the ENVIRONAGE (ENVIRonmental influence ON early AGE) birth cohort we assessed various cardiovascular measurements in 288 children aged 4-5 years. For the macrovasculature, we measured their blood pressure and examined the intima-media thickness of the carotid artery (CIMT), the arterial elasticity (including the pulse-wave velocity (PWV), carotid distensibility (DC) and compliance (CC) coefficients), the carotid ß stiffness index (SIß) and Young's Elastic Modulus (YEM). Retinal microvascular traits included the Central Retinal Arteriolar Equivalent (CRAE) and Central Retinal Venular Equivalent (CRVE). Age of the study population averaged (±SD) 4.2 (±0.4 years. Mean systolic and diastolic blood pressure were 97.9 (±8.1) mmHg and 54.7(±7.6) mmHg, respectively. CIMT for the total population averaged 487.1 (±68.1) µm. The average stiffness values for DC, CC, SIß, and PWV were 78.7 (±34.2) 10-³/kPa, 1.61 (±0.59) mm2/kPa and 4.4 (±2.4), and 3.7 m/s (±0.9) respectively. The mean determined for YEM was 163.2 kPa (±79.9). Concerning the microvasculature, the average CRAE was 180.9 (±14.2) µm and the corresponding value for CRVE was 251.0 (±19.7) µm. In contrast to the macrovasculature, a significant gender-related difference existed for the microvasculature: in boys, both the CRAE (178.8 µm vs 182.6 µm; p = 0.03) and CRVE (247.9 µm vs 254.0 µm; p = 0.01) were narrower than in girls. We have provided reference values for young children to understand changes in the early cardiovascular health trajectory. Establishing these reference values of cardiovascular phenotypes at this young age is necessary to develop targeted health promotion strategies as well as for better understanding of the life course changes of both small and large blood vessels.


Assuntos
Pressão Sanguínea/fisiologia , Artérias Carótidas/anatomia & histologia , Espessura Intima-Media Carotídea , Rigidez Vascular/fisiologia , Doenças Cardiovasculares/fisiopatologia , Pré-Escolar , Módulo de Elasticidade , Elasticidade , Feminino , Humanos , Masculino , Estudos Prospectivos , Valores de Referência , Fatores de Risco
13.
Sci Total Environ ; 711: 135028, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32000334

RESUMO

Telomere length and mitochondrial DNA content are considered biomarkers of cellular aging, oxidative stress, and inflammation, but there is almost no information on their association with tobacco smoke exposure in fetal and early life. The aim of this study was to assess whether prenatal and childhood tobacco exposure were associated with leukocyte telomere length (LTL) and mitochondrial DNA (mtDNA) content in children. As part of a multi-centre European birth cohort study HELIX (Human Early-Life Exposome) (n = 1396) we assessed maternal smoking status during pregnancy through questionnaires, and through urinary cotinine levels that were then used to classify women as not exposed to smoking (<10 µg/L), exposed to secondhand smoke (SHS) (10-50 µg/L) and active smokers (>50 µg/L). When the children were around 8 years of age (range: 5.4-12.0 years), childhood SHS tobacco smoke exposure was assessed through an extensive questionnaire and through measurements of urinary cotinine (<3.03 µg/L non-detected, >3.03 µg/L detected). Leukocyte mtDNA content and LTL were measured in the children at 8 years employing real time polymerase chain reaction (qPCR). Effect estimates were calculated using multivariate linear regression models for prenatal and childhood exposures adjusted for potential confounders. Maternal cotinine levels indicative of SHS exposure during pregnancy were associated with a decrease of 3.90% in LTL in children (95% CI: -6.68, -0.91), compared with non-smoking, whereas the association for maternal cotinine levels indicative of active smoking did not reach statistical significance (-3.24%; 95% CI: -6.59, 0.21). Childhood SHS tobacco exposure was not associated with LTL in children. Global SHS exposure during childhood was associated with an increase of 3.51% (95% CI: 0.78, 6.27) in mtDNA content. Our findings suggest that tobacco smoke exposure during pregnancy, even at SHS levels, may accelerate telomere shortening in children and thus induce biological aging from an early age.


Assuntos
Tabaco , Criança , Pré-Escolar , Estudos de Coortes , Cotinina , Feminino , Humanos , Gravidez , Telômero , Poluição por Fumaça de Tabaco
14.
Sci Rep ; 10(1): 387, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941967

RESUMO

Nutrition during early childhood is linked to metabolic programming. We hypothesized that breastfeeding has long-term consequences on the energy metabolism exemplified by mitochondrial DNA (mtDNA). As part of the third cycle of the Flemish Environment and Health Study (FLEHSIII) cohort, 303 adolescents aged 14-15 years were included. We associated breastfeeding and blood mtDNA content 14-15 years later while adjusting for confounding variables. Compared with non-breastfed adolescents, mtDNA content was 23.1% (95%CI: 4.4-45.2; p = 0.013) higher in breastfed adolescents. Being breastfed for 1-10 weeks, 11-20 weeks, and >20 weeks, was associated with a higher mtDNA content of respectively 16.0% (95%CI: -7.1-44.9; p = 0.191), 23.5% (95%CI: 0.8-51.3; p = 0.042), and 31.5% (95%CI: 4.3-65.7; p = 0.021). Our study showed a positive association between breastfeeding and mtDNA content in adolescents which gradually increased with longer periods of breastfeeding. Higher mtDNA content may be an underlying mechanism of the beneficial effects of breastfeeding on children's metabolism.


Assuntos
Aleitamento Materno/métodos , DNA Mitocondrial/sangue , Doenças Metabólicas/prevenção & controle , Mitocôndrias/metabolismo , Adolescente , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino
15.
Diabetes Care ; 43(1): 98-105, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31601636

RESUMO

OBJECTIVE: Maternal gestational diabetes mellitus (GDM) has been associated with adverse outcomes in the offspring. Growing evidence suggests that the epigenome may play a role, but most previous studies have been small and adjusted for few covariates. The current study meta-analyzed the association between maternal GDM and cord blood DNA methylation in the Pregnancy and Childhood Epigenetics (PACE) consortium. RESEARCH DESIGN AND METHODS: Seven pregnancy cohorts (3,677 mother-newborn pairs [317 with GDM]) contributed results from epigenome-wide association studies, using DNA methylation data acquired by the Infinium HumanMethylation450 BeadChip array. Associations between GDM and DNA methylation were examined using robust linear regression, with adjustment for potential confounders. Fixed-effects meta-analyses were performed using METAL. Differentially methylated regions (DMRs) were identified by taking the intersection of results obtained using two regional approaches: comb-p and DMRcate. RESULTS: Two DMRs were identified by both comb-p and DMRcate. Both regions were hypomethylated in newborns exposed to GDM in utero compared with control subjects. One DMR (chr 1: 248100345-248100614) was located in the OR2L13 promoter, and the other (chr 10: 135341870-135342620) was located in the gene body of CYP2E1. Individual CpG analyses did not reveal any differentially methylated loci based on a false discovery rate-adjusted P value threshold of 0.05. CONCLUSIONS: Maternal GDM was associated with lower cord blood methylation levels within two regions, including the promoter of OR2L13, a gene associated with autism spectrum disorder, and the gene body of CYP2E1, which is upregulated in type 1 and type 2 diabetes. Future studies are needed to understand whether these associations are causal and possible health consequences.


Assuntos
Metilação de DNA , Diabetes Gestacional , Epigênese Genética/fisiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Adulto , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Estudos de Casos e Controles , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/epidemiologia , Epigenoma/fisiologia , Feminino , Sangue Fetal/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Adulto Jovem
16.
Environ Health Perspect ; 127(11): 117001, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31691586

RESUMO

BACKGROUND: Although studies have provided estimates of premature mortality to either heat or cold in adult populations, and fetal exposure to ambient temperature may be associated with life expectancy, the effects of temperature on aging in early life have not yet been studied. Telomere length (TL) is a marker of biological aging, and a short TL at birth may predict lifespan and disease susceptibility later in life. OBJECTIVES: We studied to what extent prenatal ambient temperature exposure is associated with newborn TL. METHODS: In the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort in Flanders, Belgium, we measured cord blood and placental TL in 1,103 mother-newborn pairs (singletons with ≥36wk of gestation) using a quantitative real-time polymerase chain reaction (qPCR) method. We associated newborn TL with average weekly exposure to ambient temperature using distributed lag nonlinear models (DLNMs) while controlling for potential confounders. Double-threshold DLNMs were used to estimate cold and heat thresholds and the linear associations between temperature and TL below the cold threshold and above the heat threshold. RESULTS: Prenatal temperature exposure above the heat threshold (19.5°C) was associated with shorter cord blood TL. The association with a 1°C increase in temperature was strongest at week 36 of gestation and resulted in a 3.29% [95% confidence interval (CI): -4.67, -1.88] shorter cord blood TL. Consistently, prenatal temperature exposure below the cold threshold (5.0°C) was associated with longer cord blood TL. The association with a 1°C decrease in temperature was strongest at week 10 of gestation with 0.72% (95% CI: 0.46, 0.97) longer cord blood TL. DISCUSSION: Our study supports potential effects of prenatal temperature exposure on longevity and disease susceptibility later in life. Future climate scenarios might jeopardize the potential molecular longevity of future generations from birth onward. https://doi.org/10.1289/EHP5153.


Assuntos
Envelhecimento/fisiologia , Temperatura Baixa , Sangue Fetal/fisiologia , Temperatura Alta , Exposição Materna , Placenta/fisiologia , Encurtamento do Telômero/fisiologia , Adulto , Bélgica , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Longevidade , Masculino , Gravidez , Adulto Jovem
17.
Nat Commun ; 10(1): 3866, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530803

RESUMO

Particle transfer across the placenta has been suggested but to date, no direct evidence in real-life, human context exists. Here we report the presence of black carbon (BC) particles as part of combustion-derived particulate matter in human placentae using white-light generation under femtosecond pulsed illumination. BC is identified in all screened placentae, with an average (SD) particle count of 0.95 × 104 (0.66 × 104) and 2.09 × 104 (0.9 × 104) particles per mm3 for low and high exposed mothers, respectively. Furthermore, the placental BC load is positively associated with mothers' residential BC exposure during pregnancy (0.63-2.42 µg per m3). Our finding that BC particles accumulate on the fetal side of the placenta suggests that ambient particulates could be transported towards the fetus and represents a potential mechanism explaining the detrimental health effects of pollution from early life onwards.


Assuntos
Poluentes Atmosféricos/metabolismo , Exposição Materna/efeitos adversos , Troca Materno-Fetal , Placenta/metabolismo , Fuligem/metabolismo , Poluentes Atmosféricos/toxicidade , Bélgica , Biópsia , Estudos de Coortes , Ecotoxicologia , Feminino , Humanos , Microscopia Eletrônica de Transmissão , Permeabilidade , Placenta/patologia , Placenta/ultraestrutura , Gravidez , Características de Residência/estatística & dados numéricos , Fuligem/análise , Fuligem/toxicidade
18.
Environ Res ; 176: 108550, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260916

RESUMO

INTRODUCTION: Limited evidence suggests that epigenetic mechanisms may partially mediate the adverse effects of air pollution on health. Our aims were to identify new genomic loci showing differential DNA methylation associated with long-term exposure to air pollution and to replicate loci previously identified in other studies. METHODS: A two-stage epigenome-wide association study was designed: 630 individuals from the REGICOR study were included in the discovery and 454 participants of the EPIC-Italy study in the validation stage. DNA methylation was assessed using the Infinium HumanMethylation450 BeadChip. NOX, NO2, PM10, PM2.5, PMcoarse, traffic intensity and traffic load exposure were measured according to the ESCAPE protocol. A systematic review was undertaken to identify those cytosine-phosphate-guanine (CpGs) associated with air pollution in previous studies and we screened for them in the discovery study. RESULTS: In the discovery stage of the epigenome-wide association study, 81 unique CpGs were associated with air pollution (p-value <10-5) but none of them were validated in the replication sample. Furthermore, we identified 15 CpGs in the systematic review showing differential methylation with a p-value fulfilling the Bonferroni criteria and 1673 CpGs fulfilling the false discovery rate criteria, all of which were related to PM2.5 or NO2. None of them was replicated in the discovery study, in which the top hits were located in an intergenic region on chromosome 1 (cg10893043, p-value = 6.79·10-5) and in the LRRC45 and PXK genes (cg05088605, p-value = 2.15·10-04; cg16560256, p-value = 2.23·10-04). CONCLUSIONS: Neither new genomic loci associated with long-term air pollution were identified, nor previously identified loci were replicated. Continued efforts to test this potential association are warranted.


Assuntos
Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Poluentes Atmosféricos , Metilação de DNA , Epigênese Genética , Humanos , Itália
19.
Environ Health Perspect ; 127(5): 57012, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Metilação de DNA/efeitos dos fármacos , Epigenoma , Sangue Fetal/química , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Adolescente , Poluição do Ar/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez
20.
Front Genet ; 10: 354, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110514

RESUMO

Maternal body mass index (BMI) before pregnancy is known to affect both fetal growth and later-life health of the newborn, yet the implicated molecular mechanisms remain largely unknown. As the master regulator of the fetal environment, the placenta is a valuable resource for the investigation of processes involved in the developmental programming of metabolic health. We conducted a genome-wide placental transcriptome study aiming at the identification of functional pathways representing the molecular link between maternal BMI and fetal growth. We used RNA microarray (Agilent 8 × 60 K), medical records, and questionnaire data from 183 mother-newborn pairs from the ENVIRONAGE birth cohort study (Flanders, Belgium). Using a weighted gene co-expression network analysis, we identified 17 correlated gene modules. Three of these modules were associated with both maternal pre-pregnancy BMI and newborn birth weight. A gene cluster enriched for genes involved in immune response and myeloid cell differentiation was positively associated with maternal BMI and negatively with low birth weight. Two other gene modules, upregulated in association with maternal BMI as well as birth weight, were involved in processes related to organ and tissue development, with blood vessel morphogenesis and extracellular matrix structure as top Gene Ontology terms. In line with this, erythrocyte-, angiogenesis-, and extracellular matrix-related genes were among the identified hub genes. The association between maternal BMI and newborn weight was significantly mediated by gene expression for 5 of the hub genes (FZD4, COL15A1, GPR124, COL6A1, and COL1A1). As some of the identified hub genes have been linked to obesity in adults, our observation in placental tissue suggests that biological processes may be affected from prenatal life onwards, thereby identifying new molecular processes linking maternal BMI and fetal metabolic programming.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA