Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Total Environ ; : 143794, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33272603


Viticulture plays an important role in generating income for small farms globally. Historically, vineyards use large quantities of phytosanitary products, such as Bordeaux mixture [Ca(OH)2 + CuSO4], to control plant diseases. These products result in the accumulation of copper (Cu) in the soil and increases the risk of transfer to water bodies. Thus, it is important to evaluate whether the presence of Cu-bearing particles in water is toxic to aquatic fauna. This study conducted chemical, mineralogical, and particle size evaluations on water samples and sediments collected from a watershed predominantly cultivated with old vineyards. The proportion of Cu-rich nanoparticles (<10 nm) in the sediment was ~27%. We exposed zebrafish to different dilutions of water and sediment samples that collected directly from the study site (downstream river) under laboratory conditions. Then, we evaluated their exploratory behavior and the stress-related endocrine parameter, whole-body cortisol. We also carried out two experiments in which zebrafish were exposed to Cu. First, we determined the median lethal concentration (LC50-96 h) of Cu and then assessed whether Cu exposure results in effects similar to those associated with exposure to the water and sediment samples collected from the study site. The water and sediment samples directly impacted the exploratory behavior of zebrafish, showing clear anxiety-like behavioral phenotype and stress in terms of cortisol increase (during the second rain event). The Cu exposure did not mimic the same behavioral changes triggered by the water and sediment samples, although it had caused similar stress in the fish. Our results highlight that even at low concentrations, the water and sediment samples from vineyard watershed runoff were able to induce behavioral and endocrine changes that may harm the ecological balance of an aquatic environment.

Toxicol In Vitro ; 61: 104598, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31299314


Nanotechnology has been an important tool for the production of nanoparticles with controlled release of drugs for therapeutic applications. Here, we produced solid lipid nanoparticles (SLN) loaded with curcumin and capsaicin (NCC) following the overarching goals of green chemistry. Currently, besides evaluating the composition, and size of these, it is necessary to understand the interactions between nanoparticles and the biomolecules present in the biological medium. For this, assays were conducted in order to evaluate the potential formation of the protein 'corona', and to better understand the results obtained in vitro, we also performed an interaction study, in silico, between the NCC components and the main serum protein, albumin. In the first hour of contact between the NCC and the culture medium showed fluctuation in the diameter of the NCC. However, after 24 and 48 h of the incubation period, all NCC concentrations showed an increase in size, which can be attributed to plasma protein adsorption. Since, hard corona takes a few seconds, while the soft corona can be formed in minutes up to a few hours. On the other hand, best docking binding-poses of interaction for the formed docking complexes evaluated suggest interactions following the docking affinity like free energy FEB (Tween 80-bovine serum albumin) ≈ FEB (Span 80-bovine serum albumin) showing a pharmacodynamic pattern based in non-covalent hydrophobic interactions with the bovine serum albumin binding-site. Our in silico results clarify and reinforce our in vitro findings of corona formation, which represents the real interaction with cell membranes in vivo.

Capsaicina/química , Curcumina/química , Nanopartículas/química , Coroa de Proteína/química , Soroalbumina Bovina/química , Gorduras na Dieta , Simulação de Acoplamento Molecular