Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Plant Genome ; : e20089, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33900690

RESUMO

The development of perennial grain crops is driven by the vision of simultaneous food production and enhanced ecosystem services. Typically, perennial crops like intermediate wheatgrass (IWG)[Thinopyrum intermedium (Host) Barkworth & D.R Dewey] have low seed yield and other detrimental traits. Next-generation sequencing has made genomic selection (GS) a tractable and viable breeding method. To investigate how an IWG breeding program may use GS, we evaluated 3,658 genets over 2 yr for 46 traits to build a training population. Six statistical models were used to evaluate the non-replicated data, and a model using autoregressive order 1 (AR1) spatial correction for rows and columns combined with the genomic relationship matrix provided the highest estimates of heritability. Genomic selection models were built from 18,357 single nucleotide polymorphism markers via genotyping-by-sequencing, and a 20-fold cross-validation showed high predictive ability for all traits (r > .80). Predictive abilities improved with increased training population size and marker numbers, even with larger amounts of missing data per marker. On the basis of these results, we propose a GS breeding method that is capable of completing one cycle per year compared with a minimum of 2 yr per cycle with phenotypic selection. We estimate that this breeding approach can increase the rate of genetic gain up to 2.6× above phenotypic selection for spike yield in IWG, allowing GS to enable rapid domestication and improvement of this crop. These breeding methods should be transferable to other species with similar long breeding cycles or limited capacity for replicated observations.

2.
Nat Genet ; 53(4): 564-573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737754

RESUMO

Rye (Secale cereale L.) is an exceptionally climate-resilient cereal crop, used extensively to produce improved wheat varieties via introgressive hybridization and possessing the entire repertoire of genes necessary to enable hybrid breeding. Rye is allogamous and only recently domesticated, thus giving cultivated ryes access to a diverse and exploitable wild gene pool. To further enhance the agronomic potential of rye, we produced a chromosome-scale annotated assembly of the 7.9-gigabase rye genome and extensively validated its quality by using a suite of molecular genetic resources. We demonstrate applications of this resource with a broad range of investigations. We present findings on cultivated rye's incomplete genetic isolation from wild relatives, mechanisms of genome structural evolution, pathogen resistance, low-temperature tolerance, fertility control systems for hybrid breeding and the yield benefits of rye-wheat introgressions.


Assuntos
Mapeamento Cromossômico/métodos , Genoma de Planta , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Secale/genética , Triticum/genética , Adaptação Fisiológica/genética , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Regulação da Expressão Gênica de Plantas , Introgressão Genética , Cariótipo , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Secale/imunologia , Estresse Fisiológico
3.
Plant Genome ; : e20080, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33660427

RESUMO

In an era of constrained and depleted natural resources, perennial grains could provide sustainable food production along with beneficial ecosystem services like reduced erosion and increased atmospheric carbon capture. Intermediate wheatgrass (IWG) [Thinopyrum intermedium (Host) Barkworth & D. R. Dewey subsp. intermedium] has been undergoing continuous breeding for domestication to develop a perennial grain crop since the 1980s. As a perennial, IWG has required 2-5 yr per selection generation, but starting in 2017, genomic selection (GS) was initiated in the breeding program at The Land Institute, Salina, KS (TLI), enabling one complete cycle per year. For each cycle, ∼4,000 seedlings were profiled using genotyping-by-sequencing (GBS) and genomic estimated breeding values (GEBVs) were calculated. Selection based on GEBVs identified ∼100 individuals to advance as parents each generation, while validation populations of 1,000-1,200 genets for GS model training were also selected using the genomic relationship matrix to represent genetic diversity in each cycle. The selected parents were randomly intermated in a greenhouse crossing block to form the subsequent cycle, while the validation populations were transplanted to irrigated and nonirrigated field sites for phenotypic evaluations in the following years. For priority breeding traits of seed mass, free threshing, and nonshattering, correlations between predicted values and observed data were >.5. The realized selection differential ranged from 11-23% for selected traits, and the expected genetic gains for these traits, including spike yield, ranged from 6 to 14% per year. Genomic selection is a powerful tool to speed the domestication and development of IWG and other perennial crops with extended breeding timelines.

4.
Sci Rep ; 11(1): 5254, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664297

RESUMO

Wheat grain yield (GY) improvement using genomic tools is important for achieving yield breakthroughs. To dissect the genetic architecture of wheat GY potential and stress-resilience, we have designed this large-scale genome-wide association study using 100 datasets, comprising 105,000 GY observations from 55,568 wheat lines evaluated between 2003 and 2019 by the International Maize and Wheat Improvement Center and national partners. We report 801 GY-associated genotyping-by-sequencing markers significant in more than one dataset and the highest number of them were on chromosomes 2A, 6B, 6A, 5B, 1B and 7B. We then used the linkage disequilibrium (LD) between the consistently significant markers to designate 214 GY-associated LD-blocks and observed that 84.5% of the 58 GY-associated LD-blocks in severe-drought, 100% of the 48 GY-associated LD-blocks in early-heat and 85.9% of the 71 GY-associated LD-blocks in late-heat, overlapped with the GY-associated LD-blocks in the irrigated-bed planting environment, substantiating that simultaneous improvement for GY potential and stress-resilience is feasible. Furthermore, we generated the GY-associated marker profiles and analyzed the GY favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million datapoints. Overall, the extensive resources presented in this study provide great opportunities to accelerate breeding for high-yielding and stress-resilient wheat varieties.

5.
Commun Biol ; 4(1): 375, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742098

RESUMO

The cloning of agriculturally important genes is often complicated by haplotype variation across crop cultivars. Access to pan-genome information greatly facilitates the assessment of structural variations and rapid candidate gene identification. Here, we identified the red glume 1 (Rg-B1) gene using association genetics and haplotype analyses in ten reference grade wheat genomes. Glume color is an important trait to characterize wheat cultivars. Red glumes are frequent among Central European spelt, a dominant wheat subspecies in Europe before the 20th century. We used genotyping-by-sequencing to characterize a global diversity panel of 267 spelt accessions, which provided evidence for two independent introductions of spelt into Europe. A single region at the Rg-B1 locus on chromosome 1BS was associated with glume color in the diversity panel. Haplotype comparisons across ten high-quality wheat genomes revealed a MYB transcription factor as candidate gene. We found extensive haplotype variation across the ten cultivars, with a particular group of MYB alleles that was conserved in red glume wheat cultivars. Genetic mapping and transient infiltration experiments allowed us to validate this particular MYB transcription factor variants. Our study demonstrates the value of multiple high-quality genomes to rapidly resolve copy number and haplotype variations in regions controlling agriculturally important traits.

6.
Genes (Basel) ; 12(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668927

RESUMO

Triticum turgidum and T. timopheevii are two tetraploid wheat species sharing T. urartu as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes). We previously described the loss-of-function mutations in the Brittle Rachis 1 genes BTR1-A and BTR1-B in the A and B subgenomes, respectively, that are responsible for this most visible domestication trait in T. turgidum. Resequencing of a large panel of wild and domesticated T. turgidum accessions subsequently led to the identification of the two progenitor haplotypes of the btr1-A and btr1-B domesticated alleles. Here, we extended the haplotype analysis to other T. turgidum subspecies and to the BTR1 homologues in the related T. timopheevii species. Our results showed that all the domesticated wheat subspecies within T. turgidum share common BTR1-A and BTR1-B haplotypes, confirming their common origin. In T. timopheevii, however, we identified a novel loss-of-function btr1-A allele underlying a partially brittle spike phenotype. This novel recessive allele appeared fixed within the pool of domesticated Timopheev's wheat but was also carried by one wild timopheevii accession exhibiting partial brittleness. The promoter region for BTR1-B could not be amplified in any T. timopheevii accessions with any T. turgidum primer combination, exemplifying the gene-level distance between the two species. Altogether, our results support the concept of independent domestication processes for the two polyploid, wheat-related species.

7.
Plant Genome ; 13(3): e20034, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33217204

RESUMO

Wheat quality improvement is an important objective in all wheat breeding programs. However, due to the cost, time and quantity of seed required, wheat quality is typically analyzed only in the last stages of the breeding cycle on a limited number of samples. The use of genomic prediction could greatly help to select for wheat quality more efficiently by reducing the cost and time required for this analysis. Here were evaluated the prediction performances of 13 wheat quality traits under two multi-trait models (Bayesian multi-trait multi-environment [BMTME] and multi-trait ridge regression [MTR]) using five data sets of wheat lines evaluated in the field during two consecutive years. Lines in the second year (testing) were predicted using the quality information obtained in the first year (training). For most quality traits were found moderate to high prediction accuracies, suggesting that the use of genomic selection could be feasible. The best predictions were obtained with the BMTME model in all traits and the worst with the MTR model. The best predictions with the BMTME model under the mean arctangent absolute percentage error (MAAPE) were for test weight across the five data sets, whereas the worst predictions were for the alveograph trait ALVPL. In contrast, under Pearson's correlation, the best predictions depended on the data set. The results obtained suggest that the BMTME model should be preferred for multi-trait prediction analyses. This model allows to obtain not only the correlation among traits, but also the correlation among environments, helping to increase the prediction accuracy.

8.
Plant Cell Physiol ; 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33244607

RESUMO

Bread wheat is a major crop that has long been the focus of basic and breeding research. Assembly of its genome has been difficult because of its large size and allohexaploid nature (AABBDD genome). Following the first reported assembly of the genome of the experimental strain Chinese Spring (CS), the 10+ Wheat Genomes Project was launched to produce multiple assemblies of worldwide modern cultivars. The only Asian cultivar in the project is Norin 61, a representative Japanese cultivar adapted to grow across a broad latitudinal range, mostly characterized by a wet climate and a short growing season. Here, we characterize key aspects of its chromosome-scale genome assembly spanning 15 Gb with a raw scaffold N50 of 23 Mb. Analysis of the repetitive elements identified chromosomal regions unique to Norin 61 that encompass a tandem array of the pathogenesis-related-13 family. We report novel copy-number variations in the B homeolog of the florigen gene FT1/VRN3, pseudogenization of its D homeolog, and the association of its A homeologous alleles with the spring/winter growth habit. Further, the Norin 61 genome carries typical East Asian functional variants from CS ranging from a single nucleotide to multi-Mb scale. Examples of such variation are the Fhb1 locus, which confers Fusarium head-blight resistance, Ppd-D1a, which confers early flowering, Glu-D1f for Asian noodle quality, and Rht-D1b, which introduced semi-dwarfism during the green revolution. The adoption of Norin 61 as a reference assembly for functional and evolutionary studies will enable comprehensive characterization of the underexploited Asian bread wheat diversity.

9.
Front Plant Sci ; 11: 587093, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193537

RESUMO

The development of high-throughput genotyping and phenotyping has provided access to many tools to accelerate plant breeding programs. Unmanned Aerial Systems (UAS)-based remote sensing is being broadly implemented for field-based high-throughput phenotyping due to its low cost and the capacity to rapidly cover large breeding populations. The Structure-from-Motion photogrammetry processes aerial images taken from multiple perspectives over a field to an orthomosaic photo of a complete field experiment, allowing spectral or morphological trait extraction from the canopy surface for each individual field plot. However, some phenotypic information observable in each raw aerial image seems to be lost to the orthomosaic photo, probably due to photogrammetry processes such as pixel merging and blending. To formally assess this, we introduced a set of image processing methods to extract phenotypes from orthorectified raw aerial images and compared them to the negative control of extracting the same traits from processed orthomosaic images. We predict that standard measures of accuracy in terms of the broad-sense heritability of the remote sensing spectral traits will be higher using the orthorectified photos than with the orthomosaic image. Using three case studies, we therefore compared the broad-sense heritability of phenotypes in wheat breeding nurseries including, (1) canopy temperature from thermal imaging, (2) canopy normalized difference vegetation index (NDVI), and (3) early-stage ground cover from multispectral imaging. We evaluated heritability estimates of these phenotypes extracted from multiple orthorectified aerial images via four statistical models and compared the results with heritability estimates of these phenotypes extracted from a single orthomosaic image. Our results indicate that extracting traits directly from multiple orthorectified aerial images yielded increased estimates of heritability for all three phenotypes through proper modeling, compared to estimation using traits extracted from the orthomosaic image. In summary, the image processing methods demonstrated in this study have the potential to improve the quality of the plant trait extracted from high-throughput imaging. This, in turn, can enable breeders to utilize phenomics technologies more effectively for improved selection.

10.
Theor Appl Genet ; 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184704

RESUMO

KEY MESSAGE: The first cytological characterization of the 2NvS segment in hexaploid wheat; complete de novo assembly and annotation of 2NvS segment; 2NvS frequency is increasing 2NvS and is associated with higher yield. The Aegilops ventricosa 2NvS translocation segment has been utilized in breeding disease-resistant wheat crops since the early 1990s. This segment is known to possess several important resistance genes against multiple wheat diseases including root knot nematode, stripe rust, leaf rust and stem rust. More recently, this segment has been associated with resistance to wheat blast, an emerging and devastating wheat disease in South America and Asia. To date, full characterization of the segment including its size, gene content and its association with grain yield is lacking. Here, we present a complete cytological and physical characterization of this agronomically important translocation in bread wheat. We de novo assembled the 2NvS segment in two wheat varieties, 'Jagger' and 'CDC Stanley,' and delineated the segment to be approximately 33 Mb. A total of 535 high-confidence genes were annotated within the 2NvS region, with > 10% belonging to the nucleotide-binding leucine-rich repeat (NLR) gene families. Identification of groups of NLR genes that are potentially N genome-specific and expressed in specific tissues can fast-track testing of candidate genes playing roles in various disease resistances. We also show the increasing frequency of 2NvS among spring and winter wheat breeding programs over two and a half decades, and the positive impact of 2NvS on wheat grain yield based on historical datasets. The significance of the 2NvS segment in wheat breeding due to resistance to multiple diseases and a positive impact on yield highlights the importance of understanding and characterizing the wheat pan-genome for better insights into molecular breeding for wheat improvement.

11.
Sci Rep ; 10(1): 15972, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009436

RESUMO

Wheat blast caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) is an emerging threat to wheat production. To identify genomic regions associated with blast resistance against MoT isolates in Bolivia and Bangladesh, we performed a large genome-wide association mapping study using 8607 observations on 1106 lines from the International Maize and Wheat Improvement Centre's International Bread Wheat Screening Nurseries (IBWSNs) and Semi-Arid Wheat Screening Nurseries (SAWSNs). We identified 36 significant markers on chromosomes 2AS, 3BL, 4AL and 7BL with consistent effects across panels or site-years, including 20 markers that were significant in all the 49 datasets and tagged the 2NS translocation from Aegilops ventricosa. The mean blast index of lines with and without the 2NS translocation was 2.7 ± 4.5 and 53.3 ± 15.9, respectively, that substantiates its strong effect on blast resistance. Furthermore, we fingerprinted a large panel of 4143 lines for the 2NS translocation that provided excellent insights into its frequency over years and indicated its presence in 94.1 and 93.7% of lines in the 2019 IBWSN and SAWSN, respectively. Overall, this study reinforces the effectiveness of the 2NS translocation for blast resistance and emphasizes the urgent need to identify novel non-2NS sources of blast resistance.

12.
Evol Appl ; 13(9): 2333-2356, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33005227

RESUMO

Plant response to climate depends on a species' adaptive potential. To address this, we used reciprocal gardens to detect genetic and environmental plasticity effects on phenotypic variation and combined with genetic analyses. Four reciprocal garden sites were planted with three regional ecotypes of Andropogon gerardii, a dominant Great Plains prairie grass, using dry, mesic, and wet ecotypes originating from western KS to Illinois that span 500-1,200 mm rainfall/year. We aimed to answer: (a) What is the relative role of genetic constraints and phenotypic plasticity in controlling phenotypes? (b) When planted in the homesite, is there a trait syndrome for each ecotype? (c) How are genotypes and phenotypes structured by climate? and (d) What are implications of these results for response to climate change and use of ecotypes for restoration? Surprisingly, we did not detect consistent local adaptation. Rather, we detected co-gradient variation primarily for most vegetative responses. All ecotypes were stunted in western KS. Eastward, the wet ecotype was increasingly robust relative to other ecotypes. In contrast, fitness showed evidence for local adaptation in wet and dry ecotypes with wet and mesic ecotypes producing little seed in western KS. Earlier flowering time in the dry ecotype suggests adaptation to end of season drought. Considering ecotype traits in homesite, the dry ecotype was characterized by reduced canopy area and diameter, short plants, and low vegetative biomass and putatively adapted to water limitation. The wet ecotype was robust, tall with high biomass, and wide leaves putatively adapted for the highly competitive, light-limited Eastern Great Plains. Ecotype differentiation was supported by random forest classification and PCA. We detected genetic differentiation and outlier genes associated with primarily precipitation. We identified candidate gene GA1 for which allele frequency associated with plant height. Sourcing of climate adapted ecotypes should be considered for restoration.

13.
Front Plant Sci ; 11: 564183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042185

RESUMO

Genomic breeding technologies offer new opportunities for grain yield (GY) improvement in common wheat. In this study, we have evaluated the potential of genomic selection (GS) in breeding for GY in wheat by modeling a large dataset of 48,562 GY observations from the International Maize and Wheat Improvement Center (CIMMYT), including 36 yield trials evaluated between 2012 and 2019 in Obregón, Sonora, Mexico. Our key objective was to determine the value that GS can add to the current three-stage yield testing strategy at CIMMYT, and we draw inferences from predictive modeling of GY using 420 different populations, environments, cycles, and model combinations. First, we evaluated the potential of genomic predictions for minimizing the number of replications and lines tested within a site and year and obtained mean prediction accuracies (PAs) of 0.56, 0.5, and 0.42 in Stages 1, 2, and 3 of yield testing, respectively. However, these PAs were similar to the mean pedigree-based PAs indicating that genomic relationships added no value to pedigree relationships in the yield testing stages, characterized by small family-sizes. Second, we evaluated genomic predictions for minimizing GY testing across stages/years in Obregón and observed mean PAs of 0.41, 0.31, and 0.37, respectively when GY in the full irrigation bed planting (FI BP), drought stress (DS), and late-sown heat stress environments were predicted across years using genotype × environment (G × E) interaction models. Third, we evaluated genomic predictions for minimizing the number of yield testing environments and observed that in Stage 2, the FI BP, full irrigation flat planting and early-sown heat stress environments (mean PA of 0.37 ± 0.12) and the reduced irrigation and DS environments (mean PA of 0.45 ± 0.07) had moderate predictabilities among them. However, in both predictions across years and environments, the PAs were inconsistent across years and the G × E models had no advantage over the baseline model with environment and line effects. Overall, our results provide excellent insights into the predictability of a quantitative trait like GY and will have important implications on the future design of GS for GY in wheat breeding programs globally.

14.
Plant Genome ; 13(1): e20004, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-33016630

RESUMO

A barrier to the adoption of genomic prediction in small breeding programs is the initial cost of genotyping material. Although decreasing, marker costs are usually higher than field trial costs. In this study we demonstrate the utility of stratifying a narrow-base biparental oat population genotyped with a modest number of markers to employ genomic prediction at early and later generations. We also show that early generation genotyping data can reduce the number of lines for later phenotyping based on selections of siblings to progress. Using sets of small families selected at an early generation could enable the use of genomic prediction for adaptation to multiple target environments at an early stage in the breeding program. In addition, we demonstrate that mixed marker data can be effectively integrated to combine cheap dominant marker data (including legacy data) with more expensive but higher density codominant marker data in order to make within generation and between lineage predictions based on genotypic information. Taken together, our results indicate that small programs can test and initiate genomic predictions using sets of stratified, narrow-base populations and incorporating low density legacy genotyping data. This can then be scaled to include higher density markers and a broadened population base.


Assuntos
Avena , Genoma , Avena/genética , Cruzamento , Genômica , Genótipo
15.
Front Plant Sci ; 11: 580136, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973861

RESUMO

Breeding for grain yield (GY) in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at Obregon, Mexico in different selection environments (SEs). To understand the efficiency of selection in the SEs, we performed a large retrospective quantitative genetics study using CIMMYT's yield trials evaluated in the SEs (2013-2014 to 2017-2018), the South Asia Bread Wheat Genomic Prediction Yield Trials (SABWGPYTs) evaluated in India, Pakistan, and Bangladesh (2014-2015 to 2017-2018), and the Elite Spring Wheat Yield Trials (ESWYTs) evaluated in several sites globally (2003-2004 to 2016-2017). First, we compared the narrow-sense heritabilities in the Obregon SEs and target sites and observed that the mean heritability in the SEs was 44.2 and 92.3% higher than the mean heritabilities in the SABWGPYT and ESWYT sites, respectively. Second, we observed significant genetic correlations between a SE in Obregon and all the five SABWGPYT sites and 65.1% of the ESWYT sites. Third, we observed high ratios of response to indirect selection in the SEs of Obregon with a mean of 0.80 ± 0.21 and 2.6 ± 5.4 in the SABWGPYT and ESWYT sites, respectively. Furthermore, our results also indicated that for all the SABWGPYT sites and 82% of the ESWYT sites, a response greater than 0.5 can be achieved by indirect selection for GY in Obregon. We also performed genomic prediction for GY in the target sites using the performance of the same lines in the SEs of Obregon and observed moderate mean prediction accuracies of 0.24 ± 0.08 and 0.28 ± 0.08 in the SABWGPYT and ESWYT sites, respectively using the genotype x environment (GxE) model. However, we observed similar accuracies using the baseline model with environment and line effects and no advantage of modeling GxE interactions. Overall, this study provides important insights into the suitability of the Obregon SEs in breeding for GY, while the variable genomic predictabilities of GY and the high year-to-year GY fluctuations reported, highlight the importance of multi-environment testing across time and space to stave off GxE induced uncertainties in varietal yields.

16.
Theor Appl Genet ; 133(11): 3217-3233, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32785739

RESUMO

KEY MESSAGE: Paternity assignment and genome-wide association analyses for fertility were applied to a Thinopyrum intermedium breeding program. A lack of progeny between combinations of parents was associated with loci near self-incompatibility genes. In outcrossing species such as intermediate wheatgrass (IWG, Thinopyrum intermedium), polycrossing is often used to generate novel recombinants through each cycle of selection, but it cannot track pollen-parent pedigrees and it is unknown how self-incompatibility (SI) genes may limit the number of unique crosses obtained. This study investigated the potential of using next-generation sequencing to assign paternity and identify putative SI loci in IWG. Using a reference population of 380 individuals made from controlled crosses of 64 parents, paternity was assigned with 92% agreement using Cervus software. Using this approach, 80% of 4158 progeny (n = 3342) from a polycross of 89 parents were assigned paternity. Of the 89 pollen parents, 82 (92%) were represented with 1633 unique full-sib families representing 42% of all potential crosses. The number of progeny per successful pollen parent ranged from 1 to 123, with number of inflorescences per pollen parent significantly correlated to the number of progeny (r = 0.54, p < 0.001). Shannon's diversity index, assessing the total number and representation of families, was 7.33 compared to a theoretical maximum of 8.98. To test our hypothesis on the impact of SI genes, a genome-wide association study of the number of progeny observed from the 89 parents identified genetic effects related to non-random mating, including marker loci located near putative SI genes. Paternity testing of polycross progeny can impact future breeding gains by being incorporated in breeding programs to optimize polycross methodology, maintain genetic diversity, and reveal genetic architecture of mating patterns.

17.
Plant Sci ; 295: 110396, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32534615

RESUMO

The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has much to offer in breeding as well as research. This review considers the 'breeder friendliness' of phenotyping within three main domains: (i) the 'minimum data set', where being 'handy' or accessible and easy to collect and use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively new for most breeders, and requiring significantly greater investment with technical hurdles for implementation and a steeper learning curve than the minimum data set; (iii) detailed characterization or 'precision' phenotyping, typically customized for a set of traits associated with a target environment and requiring significant time and resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built from the high-throughput and detailed precision phenotypes. This review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translational research to deliver other new breeding resources, and how the different categories of phenotyping listed above apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.

18.
Plant Methods ; 16: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280361

RESUMO

Background: Short read sequencing technologies, such as genotyping-by-sequencing (GBS), have been utilized in genetic mapping, marker development, and population genomic studies. High-throughput and multiplexing capability coupled with low cost make GBS an appropriate tool for molecular research. Here, we present the application of GBS to characterize wheat aneuploid stocks and detect chromosomal aberrations including aneuploidy and chromosomal deletions. These aneuploids are an important resource that have been used in wheat genetics and genomics studies to localize genes, determine physical positions, and develop chromosome bin maps. Results: Using GBS, we mapped sequence reads and quantified read coverage across chromosome bins. Using this approach, we confirmed known deletions and aneuploid stocks. In addition, we were also able to fully characterize these stocks and to identify several novel deletions and aneuploids. With this knowledge and a quick detection tool at our disposal, we can easily isolate these deletions and aneuploids into distinct lines. Conclusion: We envision this tool to replace the intensive cytogenetics techniques, such as C-banding, and fluorescent- and genomic-in situ hybridization to accurately detect chromosome dosage and segmental deletions in wheat genetic stocks as well as other crop species.

19.
Front Plant Sci ; 11: 319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265968

RESUMO

Perennial grains could simultaneously provide food for humans and a host of ecosystem services, including reduced erosion, minimized nitrate leaching, and increased carbon capture. Yet most of the world's food and feed is supplied by annual grains. Efforts to domesticate intermediate wheatgrass (Thinopyrumn intermedium, IWG) as a perennial grain crop have been ongoing since the 1980's. Currently, there are several breeding programs within North America and Europe working toward developing IWG into a viable crop. As new breeding efforts are established to provide a widely adapted crop, questions of how genomic and phenotypic data can be used among sites and breeding programs have emerged. Utilizing five cycles of breeding data that span 8 years and two breeding programs, University of Minnesota, St. Paul, MN, and The Land Institute, Salina, KS, we developed genomic selection (GS) models to predict IWG traits. Seven traits were evaluated with free-threshing seed, seed mass, and non-shattering being considered domestication traits while agronomic traits included spike yield, spikelets per inflorescence, plant height, and spike length. We used 6,199 genets - unique, heterozygous, individual plants - that had been profiled with genotyping-by-sequencing, resulting in 23,495 SNP markers to develop GS models. Within cycles, the predictive ability of GS was high, ranging from 0.11 to 0.97. Across-cycle predictions were generally much lower, ranging from -0.22 to 0.76. The prediction ability for domestication traits was higher than agronomic traits, with non-shattering and free threshing prediction abilities ranging from 0.27 to 0.75 whereas spike yield had prediction abilities ranging from -0.22 to 0.26. These results suggest that progress to reduce shattering and increase the percent free-threshing grain can be made irrespective of the location and breeding program. While site-specific programs may be required for agronomic traits, synergies can be achieved in rapidly improving key domestication traits for IWG. As other species are targeted for domestication, these results will aid in rapidly domesticating new crops.

20.
Front Plant Sci ; 11: 197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194596

RESUMO

Untangling the genetic architecture of grain yield (GY) and yield stability is an important determining factor to optimize genomics-assisted selection strategies in wheat. We conducted in-depth investigation on the above using a large set of advanced bread wheat lines (4,302), which were genotyped with genotyping-by-sequencing markers and phenotyped under contrasting (irrigated and stress) environments. Haplotypes-based genome-wide-association study (GWAS) identified 58 associations with GY and 15 with superiority index Pi (measure of stability). Sixteen associations with GY were "environment-specific" with two on chromosomes 3B and 6B with the large effects and 8 associations were consistent across environments and trials. For Pi, 8 associations were from chromosomes 4B and 7B, indicating 'hot spot' regions for stability. Epistatic interactions contributed to an additional 5-9% variation on average. We further explored whether integrating consistent and robust associations identified in GWAS as fixed effects in prediction models improves prediction accuracy. For GY, the model accounting for the haplotype-based GWAS loci as fixed effects led to up to 9-10% increase in prediction accuracy, whereas for Pi this approach did not provide any advantage. This is the first report of integrating genetic architecture of GY and yield stability into prediction models in wheat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...