Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33772638

RESUMO

The dopaminergic system of zebrafish is complex and the numerous pathways and receptors in the central nervous system (CNS) are being extensively studied. A critical factor for the synthesis, activation and release of catecholamines (CAs) is the presence of tyrosine hydroxylase, an enzyme which converts L-tyrosine into levodopa. Levodopa thus is the intermediary in the synthesis of dopamine (DA) and norepinephrine (NE) and promotes its release; therefore, CAs play an important role in the CNS with hormonal functions. Here, we use levodopa/carbidopa to clarify the involvement of the dopaminergic pathway in the stress response in zebrafish submitted to an acute stress challenge. Acute stress was induced by chasing fish with a net for 2 min and assessed by measuring whole-body cortisol levels. Two experiments were carried out, the first with exposure to levodopa/carbidopa and the second with exposure to AMPT and levodopa/carbidopa. Levodopa/carbidopa balances the stress response through its action on the zebrafish hypothalamic-pituitary-adrenal (HPA) axis. Changes in cortisol levels suggest that DA was related to the balance of the stress response and that NE decreased this response. These effects were specific to stress since levodopa/carbidopa did not induce changes in cortisol in non-stressed fish.

2.
Behav Brain Res ; 404: 113169, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33577884

RESUMO

The zebrafish (Danio rerio) is widely used as a promising translational model organism for studying various brain disorders. Zebrafish are also commonly used in behavioral and drug screening assays utilizing individually tested (socially isolated) fish. Various sounds represent important exogenous factors that may affect fish behavior. Mounting evidence shows that musical/auditory environmental enrichment can improve welfare of laboratory animals, including fishes. Here, we show that auditory environmental enrichment mitigates anxiogenic-like effects caused by acute 24-h social isolation in adult zebrafish. Thus, auditory environmental enrichment may offer an inexpensive, feasible and simple tool to improve welfare of zebrafish stocks in laboratory facilities, reduce unwanted procedural stress, lower non-specific behavioral variance and, hence, collectively improve zebrafish data reliability and reproducibility.

3.
Sci Total Environ ; : 143794, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33272603

RESUMO

Viticulture plays an important role in generating income for small farms globally. Historically, vineyards use large quantities of phytosanitary products, such as Bordeaux mixture [Ca(OH)2 + CuSO4], to control plant diseases. These products result in the accumulation of copper (Cu) in the soil and increases the risk of transfer to water bodies. Thus, it is important to evaluate whether the presence of Cu-bearing particles in water is toxic to aquatic fauna. This study conducted chemical, mineralogical, and particle size evaluations on water samples and sediments collected from a watershed predominantly cultivated with old vineyards. The proportion of Cu-rich nanoparticles (<10 nm) in the sediment was ~27%. We exposed zebrafish to different dilutions of water and sediment samples that collected directly from the study site (downstream river) under laboratory conditions. Then, we evaluated their exploratory behavior and the stress-related endocrine parameter, whole-body cortisol. We also carried out two experiments in which zebrafish were exposed to Cu. First, we determined the median lethal concentration (LC50-96 h) of Cu and then assessed whether Cu exposure results in effects similar to those associated with exposure to the water and sediment samples collected from the study site. The water and sediment samples directly impacted the exploratory behavior of zebrafish, showing clear anxiety-like behavioral phenotype and stress in terms of cortisol increase (during the second rain event). The Cu exposure did not mimic the same behavioral changes triggered by the water and sediment samples, although it had caused similar stress in the fish. Our results highlight that even at low concentrations, the water and sediment samples from vineyard watershed runoff were able to induce behavioral and endocrine changes that may harm the ecological balance of an aquatic environment.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32800866

RESUMO

Methylphenidate (MPH) is a psychostimulant widely misused to increase wakefulness by drivers and students. Also, MPH can be found in dietary supplements in a clandestine manner aiming to burst performance of physical exercise practitioners. The abusive use of high doses of caffeine (CAF) in these contexts is equally already known. Here, we demonstrate the behavioral, oxidative and mitochondrial effects after acute exposure to high doses of MPH (80 mg/L) and CAF (150 mg/L), alone or associated (80 mg/L + 150 mg/L, respectively). We used zebrafish as animal model due to its high translational relevance. We evaluated the behavioral effects using the Novel Tank Test (NTT), Social Preference Test (SPT) and Y-maze Task and analyzed biomarkers of oxidative stress and activity of mitochondrial respiratory chain complexes. MPH alone induced antisocial behavior. MPH inhibited lipid peroxidation. The association of MPH + CAF presented memory impairment and anxiogenic behavior. In oxidative status, it inhibited lipid peroxidation, increased protein carbonylation and mitochondrial complex II, III and IV activity. Our results demonstrate that MPH and CAF alone negatively impact the typical behavioral of zebrafish. When associated, changes in cognition, memory, oxidative and mitochondrial status are more relevant.

5.
Environ Sci Pollut Res Int ; 27(31): 38559-38567, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623676

RESUMO

Due to human activities, there is an increasing presence of agrochemicals residues in water bodies, which could be attributed to an increased use of these chemicals, incorrect disposal of packaging materials, and crop leaching. The effects of these residues on prey-predator relationship of aquatic animals are poorly known. Here, we show that fish acutely exposed to glyphosate, 2,4-D, and methylbenzoate-based agrichemicals have their anti-predatory responses impaired. We exposed zebrafish to sub-lethal concentrations of agrichemicals and evaluated their behavioral reaction against a simulated bird predatory strike. We observed that agrichemical-exposed fish spent more time in a risky area, suggesting that the pesticides interfered with their ability of risk perception. Our results highlight the impairment and environmental consequences of agrochemical residues, which can affect aquatic life and crucial elements for life (food web) such as the prey-predator relationship.


Assuntos
Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Agroquímicos , Animais , Cadeia Alimentar , Humanos , Comportamento Predatório
6.
Physiol Behav ; 222: 112944, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407833

RESUMO

Zebrafish has become an animal model in research and articles have established ideal conditions for their maintenance. However, little is known regarding the influence of gender and other cues on zebrafish behavior. Thus, here we analyzed the exploratory and social behavior of different sexes (male and female, mixed or segregated) under different housing conditions with various types of stimuli (visual or/and chemical cues and structural environmental enrichment). Segregated females and males were more active than mixed individuals and females were more anxious. Fish that visualized and smelled the opposite sex presented higher activity and were less anxious than individuals that only smelled or visualized the opposite sex. Fish segregated by sex while being allowed to visualize and smell the opposite sex with the presence of structural environmental enrichment exhibited lower activity and anxiety-like behavior than fish without structural environmental enrichment. Thus, we emphasized that these variables should be taken into account in housing conditions and should be detailed for better replicability and reproducibility of experiments performed with zebrafish.

7.
Stress ; : 1-6, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32013653

RESUMO

We report the effects of acute and chronic stress on the expression of selective immune-related genes and markers of neuronal function in the brain of the zebrafish (Danio rerio). Fish were distributed into three groups: the non-stressed control group; the acute stress (AS) group, submitted to a single stressing episode; and the unpredictable chronic stress (UCS) group, submitted to two daily stressing episodes of alternating times and types of stress. The stressing protocols were applied for a period of 14 days. The UCS protocol triggered the expression of the pro-inflammatory cytokine genes IL-1ß and TNF-α, the anti-inflammatory cytokine IL-10 (negative feedback from the immune system), reduction in cFOS gene expression, and caused neuro-inflammation. The AS protocol had no effect on gene expression. Altered expression of cytokine genes, as observed in our study, correlates with several pathologies associated with neuro-inflammation, and the reduction of cFOS gene expression may indicate the occurrence of reduced neuronal plasticity. Our study further extends our knowledge about the interaction of the immune system and the different forms of stress.

8.
Pharmacol Biochem Behav ; 189: 172841, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31893526

RESUMO

Environmental pollution caused by antipsychotic residues is a relevant ecological problem. Studies revealed that residues of these drugs are present in a wide range of different ecosystems and can have adverse effects on non-target organisms even in low environmental concentrations. Among these antipsychotic drugs, aripiprazole (APPZ) is a second-generation atypical antipsychotic that is a partial agonist of dopaminergic and serotoninergic receptors. APPZ is used to treat schizophrenia, bipolar disorder, autism, obsessive-compulsive disorder, and anxiety or panic disorders. Thus, in this study we posed the following question: "What will be the behavioral effects of waterborne APPZ on fish?" To answer this question, we exposed adult zebrafish to different APPZ concentrations (0.556, 5.56, and 556 ng/L) for 15 min and evaluated their exploratory, anxiety-like, social, and anti-predatory behaviors. Our results showed that, despite the apparent beneficial reversal of stress-induced social impairment and anxiety-like behavior, APPZ exposure impaired the anti-predatory reaction of adult zebrafish. Taken altogether, our results show that APPZ-exposed zebrafish may have a decreased perception of predators, even at concentrations lower than those already detected in the environment. A failure to exhibit an antipredatory response may favor the predator, decrease the fitness of the prey species, and, consequently, affect the food chain. Our results highlight the risks and consequences associated with APPZ residues in water, which may affect aquatic life and endanger species that depend on appropriate behavioral responses for survival.

9.
Environ Sci Pollut Res Int ; 26(25): 26293-26303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31286368

RESUMO

Since behavior is the connection between the internal physiological processes of an animal and its interaction with the environment, a complete behavioral repertoire is crucial for fish survival and fitness, at both the individual and population levels. Thus, unintended exposure of non-target organisms to antipsychotic residues in the environment can impact their normal behavior, and some of these behavioral changes can be seen during the entire life of the animal and passed to subsequent generations. Although there are some reports related to transgenerational toxicology, little is known of the long-term consequences of exposure to pharmaceutical compounds such as risperidone. Here, we show that zebrafish exposed to risperidone (RISP) during embryonic and larval stages presented impaired anti-predatory behavior during adulthood, characterizing a persistent effect. We also show that some of these behavioral changes are present in the following generation, characterizing a transgenerational effect. This suggests that even short exposures to environmentally relevant concentrations, at essential stages of development, can persist throughout the whole life of the zebrafish, including its offspring. From an environmental perspective, our results suggested possible risks and long-term consequences associated with drug residues in water, which can affect aquatic life and endanger species that depend on appropriate behavioral responses for survival.


Assuntos
Risperidona/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra , Animais , Comportamento Animal/efeitos dos fármacos , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Feminino , Larva/efeitos dos fármacos , Masculino , Comportamento Predatório/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia
10.
Arch Environ Contam Toxicol ; 77(3): 443-451, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31190101

RESUMO

Environmental contamination caused by the human occupancy and economic activities that generate a wide range of contaminated effluents that reach natural water resources, is a current reality. Residues of agrichemicals used in plant production were detected in different environments and in different countries. Among these agrochemicals, we studied a glyphosate-based herbicide (GBH), a fipronil-based insecticide (FBI), and their mixtures (GBH + FBI). Zebrafish exposed to 3 and 5 mg/L of GBH spend more time in the top zone and less time in the bottom zone. Fish exposed to 0.009 and 0.018 mg/L of FBI spent less time in the bottom zone, whereas zebrafish exposed to the three GBH + FBI mixtures spend more time in the top zone compared with unexposed control fish. This clear anxiolytic pattern, in an environmental context, can directly impair the ability of fish to avoid or evade predators. We concluded that both glyphosate-based herbicide and fipronil-based insecticide and their mixtures alter zebrafish behavior, which may result in significant repercussions on the maintenance of the species as well as on the food chain and the ecosystem.


Assuntos
Glicina/análogos & derivados , Praguicidas/toxicidade , Pirazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Ecossistema , Feminino , Glicina/toxicidade , Humanos , Masculino , Comportamento Predatório
11.
Horm Behav ; 109: 44-52, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742830

RESUMO

The zebrafish (Danio rerio) is used as an emergent model organism to investigate the behavioral and physiological responses to stress. The anxiolytic-like effects of taurine in zebrafish support the existence of different mechanisms of action, which can play a role in preventing stress-related disorders (i.e., modulation of GABAA, strychnine-sensitive glycine, and NMDA receptors, as well as antioxidant properties). Herein, we investigate whether taurine modulates some behavioral and biochemical responses in zebrafish acutely submitted to chemical and mechanical stressors. We pretreated zebrafish for 1 h in beakers at 42, 150, and 400 mg/L taurine. Fish were later acutely exposed to a chemical stressor (conspecific alarm substance) or to a mechanical stressor (net chasing), which elicits escaping responses and aversive behaviors. Locomotion, exploration, and defensive-like behaviors were measured using the novel tank and the light-dark tests. Biochemical (brain oxidative stress-related parameters) and whole-body cortisol levels were also quantified. We showed that taurine prevents anxiety/fear-like behaviors and protein carbonylation and dampens the cortisol response following acute stress in zebrafish. In summary, our results demonstrate a protective role of taurine against stress-induced behavioral and biochemical changes, thereby reinforcing the growing utility of zebrafish models to investigate the neuroprotective actions of taurine in vertebrates.


Assuntos
Estresse Fisiológico/efeitos dos fármacos , Taurina/farmacologia , Peixe-Zebra/fisiologia , Animais , Antioxidantes/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Hidrocortisona/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...