Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33534144

RESUMO

After trauma, the formed fracture hematoma within the fracture gap contains all the important components (immune/stem cells, mediators) to initiate bone regeneration immediately. Thus, it is of great importance but also the most susceptible to negative influences. To study the interaction between bone and immune cells within the fracture gap, up-to-date in vitro systems should be capable of recapitulating cellular and humoral interactions and the physicochemical microenvironment (eg, hypoxia). Here, we first developed and characterized scaffold-free bone-like constructs (SFBCs), which were produced from bone marrow-derived mesenchymal stromal cells (MSCs) using a macroscale mesenchymal condensation approach. SFBCs revealed permeating mineralization characterized by increased bone volume (µCT, histology) and expression of osteogenic markers (RUNX2, SPP1, RANKL). Fracture hematoma (FH) models, consisting of human peripheral blood (immune cells) mixed with MSCs, were co-cultivated with SFBCs under hypoxic conditions. As a result, FH models revealed an increased expression of osteogenic (RUNX2, SPP1), angiogenic (MMP2, VEGF), HIF-related (LDHA, PGK1), and inflammatory (IL6, IL8) markers after 12 and 48 hours co-cultivation. Osteogenic and angiogenic gene expression of the FH indicate the osteoinductive potential and, thus, the biological functionality of the SFBCs. IL-6, IL-8, GM-CSF, and MIP-1ß were detectable within the supernatant after 24 and 48 hours of co-cultivation. To confirm the responsiveness of our model to modifying substances (eg, therapeutics), we used deferoxamine (DFO), which is well known to induce a cellular hypoxic adaptation response. Indeed, DFO particularly increased hypoxia-adaptive, osteogenic, and angiogenic processes within the FH models but had little effect on the SFBCs, indicating different response dynamics within the co-cultivation system. Therefore, based on our data, we have successfully modeled processes within the initial fracture healing phase in vitro and concluded that the cross-talk between bone and immune cells in the initial fracture healing phase is of particular importance for preclinical studies. © 2021 American Society for Bone and Mineral Research (ASBMR).

2.
Materials (Basel) ; 13(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238505

RESUMO

The sulfonated polynaphthoyleneimide polymer (co-PNIS70/30) was prepared by copolymerization of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODAS) and 4,4'-methylenebisanthranilic acid (MDAC) with ODAS/MDAC molar ratio 0.7/0.3. High molecular weight co-PNIS70/30 polymers were synthesized either in phenol or in DMSO by catalytic polyheterocyclization in the presence of benzoic acid and triethylamine. The titration reveals the ion-exchange capacity of the polymer equal to 2.13 meq/g. The membrane films were prepared by casting polymer solution. Conductivities of the polymer films were determined using both in- and through-plane geometries and reached ~96 and ~60 mS/cm, respectively. The anisotropy of the conductivity is ascribed to high hydration of the surface layer compared to the bulk. SFG NMR diffusometry shows that, in the temperature range from 213 to 353 K, the 1H self-diffusion coefficient of the co-PNIS70/30 membrane is about one third of the diffusion coefficient of Nafion® at the same humidity. However, temperature dependences of proton conductivities of Nafion® and of co-PNIS70/30 membranes are nearly identical. Membrane-electrode assemblies (MEAs) based on co-PNIS70/30 were fabricated by different procedures. The optimal MEAs with co-PNIS70/30 membranes are characterized by maximum output power of ~370 mW/cm2 at 80 °C. It allows considering sulfonated co-PNIS70/30 polynaphthoyleneimides membrane attractive for practical applications.

3.
Polymers (Basel) ; 12(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33114143

RESUMO

The effect of temperature and storage time at a constant temperature on the stability of poly-(o-aminophenylene)naphthoylenimide solutions in N-methylpyrrolidone has been analyzed using rotational rheometry. A temperature-time window beyond which an irreversible change in the viscoelastic properties of solutions due to cumulative reactions of continuous polymerization and possible intramolecular cyclization has been detected. The influence of polymer concentration and its molecular weight on the rheological properties of solutions determining the choice of methods for their processing into fibers and films has been investigated. The effect of non-solvents (water and ethanol) additives on the rheological properties of solutions and the kinetics of their coagulation has been studied. Dosed addition of non-solvent into the solution promotes a significant increase in the viscoelasticity up to gelation and phase separation. Non-solvent presence in the polymer solutions reduces the activity of the solvent, accelerates the movement of the diffusion front at coagulation, and minimizes the number of macro defects. The combination of parameters under investigation renders it possible for the first time to develop new principles modifying dopes for wet spinning into aqueous or ethanol coagulation bath and finally to obtain a heat- and fire-resistant polynaphthoylenebenzimidazole fibers.

4.
Polymers (Basel) ; 12(6)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545725

RESUMO

Electrospinning of polyacrylonitrile/DMF dopes containing salts of nickel, cobalt, zirconium, cerium, gadolinium, and samarium, makes it possible to obtain precursor nanofiber mats which can be subsequently converted into carbon nanofiber (CNF) composites by pyrolysis at 1000-1200 °C. Inorganic additives were found to be uniformly distributed in CNFs. Metal states were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). According to XPS in CNF/Zr/Ni/Gd composites pyrolyzed at 1000 °C, nickel exists as Ni0 and as Ni2+, gadolinium as Gd3+, and zirconium as Zr4+. If CNF/Zr/Ni/Gd is pyrolyzed at 1200 °C, nickel exists only as Ni0. For CNF/Sm/Co composite, samarium is in Sm3+ form when cobalt is not found on a surface. For CNF/Zr/Ni/Ce composite, cerium exists both as Ce4+ and as Ce3+. Composite CNF mats were platinized and tested as cathodes in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Such approach allows to introduce Pt-M and Pt-MOx into CNF, which are more durable compared to carbon black under HT-PEMFC operation. For CNF/Zr/Ni/Gd composite cathode, higher performance in the HT-PEMFC at I >1.2 A cm-2 is achieved due to elimination of mass transfer losses in gas-diffusion electrode compared to commercial Celtec®P1000.

5.
Biofabrication ; 12(4): 045016, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598334

RESUMO

Understanding the pathophysiological processes of cartilage degradation requires adequate model systems to develop therapeutic strategies towards osteoarthritis (OA). Although different in vitro or in vivo models have been described, further comprehensive approaches are needed to study specific disease aspects. This study aimed to combine in vitro and in silico modeling based on a tissue-engineering approach using mesenchymal condensation to mimic cytokine-induced cellular and matrix-related changes during cartilage degradation. Thus, scaffold-free cartilage-like constructs (SFCCs) were produced based on self-organization of mesenchymal stromal cells (mesenchymal condensation) and (i) characterized regarding their cellular and matrix composition or secondly (ii) treated with interleukin-1ß (IL-1ß) and tumor necrosis factor α (TNFα) for 3 weeks to simulate OA-related matrix degradation. In addition, an existing mathematical model based on partial differential equations was optimized and transferred to the underlying settings to simulate the distribution of IL-1ß, type II collagen degradation and cell number reduction. By combining in vitro and in silico methods, we aimed to develop a valid, efficient alternative approach to examine and predict disease progression and effects of new therapeutics.

6.
J Lasers Med Sci ; 10(4): 350-354, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31875131

RESUMO

Introduction: Basal cell carcinoma (BCC) is the most prevalent form of non-melanoma skin cancer commonly arising in elderly patients. Currently, many laser systems are applied for the treatment of BCC. However, up to the present, there have been several reports concerning ocular side effects due to the laser procedure in the borders of the periorbital area. This determines the feasibility of testing new laser surgical modes for the management of periorbital BCC. This stuay aimed to estimate both the efficacy, the early post-radiated side effects and long-term outcomes of the CVL treatment of periorbital BCC. Patients and Methods: Two men and 6 women aged 50 to 77 years were diagnosed with periorbital BCC according to the data of both the clinical evaluation and histological examination of the tissue samples taken from the involved area. Six months after the laser treatment, the histological examination of skin samples from the borderline of the irradiated area was made again. All patients were followed for 24 months after the laser treatment of BCC. The laser treatment was administered during one session of copper vapor laser (CVL) (Yakhroma-Med model). The treatment included CVL radiation with a wavelength of 511 nm and 578 nm, in the ratio of 3:2. The power level was set up to 3 W, and the exposure time was equal from 200 to 600 ms. The pulse duration accounted for 15 ns. The diameter of the light spot on the skin surface amounted to 1 mm. Results: Dual-wavelengths CVL treatment of periorbital BCC provided a complete elimination of malignant cells and dysplastic vessels during one procedure. The duration of skin healing amounted to 2-4 weeks. There were neither ocular injuries or pronounced skin side effects nor relapses within 24 months after the laser procedure. Conclusion: CVL treatment of periorbital BCC provides relevant cosmetic results without ocular injuries and relapses.

7.
Materials (Basel) ; 12(21)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731389

RESUMO

A new approach to the synthesis of polynaphthoylenebenzimidazoles and heat resistant fiber spinning has been developed using an environmentally friendly and energy efficient method, which operates with solutions of pre-polymers based on 3,3',4,4'-tetraaminodiphenyl ether and 1,4,5,8-naphthalenetetracarboxylic acid dianhydride in N-methylpyrrolidone. Rheological properties of polymer reaction solutions and appropriate coagulant mixtures were investigated for further wet spinning process. The coagulation process was investigated through microscopic observation of solution droplets which imitate jet/fiber cross section surrounded with coagulants of different composition. For the case of the most optimal viscoelastic properties of dopes the best coagulant was found to be a ternary mixture ethanol/water/NMP (20/10/70). Fibers were prepared through the wet spinning from pre-polymers of various molecular weight characterized by intrinsic viscosity. As a result, complex yarns were spun, and their morphology was characterized and mechanical properties were measured. The strength of ~300 MPa and elastic modulus of ~2 GPa and elongation at break of ~20% were reached for the best fibers at average diameter of ~20 µm. After heat treatment "Lola-M" fibers do not burn and do not support combustion in open flame.

8.
J Lasers Med Sci ; 10(1): 44-49, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360368

RESUMO

Introduction: Different yellow lasers have been successfully used for the treatment of vascular lesions. This study is aimed to ascertain the role and efficiency of copper vapor lasers (CVLs) and pulsed dye lasers (PDLs) for the treatment of vascular lesions using numerical modeling and to compare results with our clinical experience. In this study we aimed to develop criteria for the choice of more efficient laser exposure mode, investigate more relevant modes of laser irradiation to ensure selective photothermolysis of target vessels, and compare the CVL and PDL efficiency in the course of patients with skin vascular lesions (SVL) treatment. Methods: We performed numerical simulation of the processes of heating a vessel with CVL and PDL to temperatures at which its coagulation could occur. Calculated fluencies were compared with clinical results of laser therapy performed on 1242 patients with skin hemangiomas and vascular malformations (SHVM), including 635 patients treated with CVL and 607 patients treated with PDL. PDL and CVL provided excellent results in 40 and ten days after treatment. The treatment was not painful. Patients did not need anesthesia. Postoperative crusts were greater with PDL than with CVL. Results: Results of computer simulation of a selective vessel heating using PDL and CVL radiation are presented. By results obtained, depth of the location and sizes of vessels that could be selectively heated to more than 75°C are determined. Conclusion: Based on calculated and clinical data, the heating mode for dysplastic vessels using a series of CVL micropulses could be regarded to be safer and more efficient than the mode of a PDL short, powerful pulse.

9.
J Lasers Med Sci ; 10(2): 153-156, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360385

RESUMO

Introduction: Rhinophyma is recognized as a common and severe skin disease manifested as progressive thickening of the nasal skin due to hypertrophy of the soft tissue. The most severe complication of rhinophyma is telangiectasis. So far the pathogenetic approach for the treatment of rhinophyma should be based on the removal of the dysplastic vessels to provide the appropriate revascularization of the involved skin area. Case Report: This study presented the experience of the treatment of rhinophyma with the copper vapor laser (CVL) designed with the computerized scanner device. A 52-year-old elderly Caucasian male patient with typical clinical signs of rhinophyma was successfully managed during three sessions of CVL treatment. CVL emits light with a wavelength of 578 nm, exposure time of 0.2 seconds. The settings used for the CVL in scanner mode were set at 1.2 W. The scanner device has a hexagonal frame with a maximum width of 12 mm with the distance of 1 mm between centers of laser spots. The CVL treatment resulted in a restoration of the natural appearance of the nose without side effect during 18 months after treatment. Conclusion: The described clinical case demonstrates excellent results of the management of rhinophyma by means of the scanned CVL. CVL treatment was associated with the removal both of dysplastic superficial skin vessels, the solution of the inflammation, decline of the sebum production and the disappearance of the nasal hypertrophy.

10.
PLoS One ; 14(4): e0214276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947253

RESUMO

Fractures in horses-whether simple fractures with just one clean break, or incomplete greenstick with stress fractures, or complications such as shattered bones can all be either minimal or even catastrophic. Thus, improvement in fracture healing is a hallmark in equine orthopedics. The fracture healing process implements a complex sequence of events including the initial inflammatory phase removing damaged tissue, re-establishment of vessels and mesenchymal stromal cells, a soft and hard callus phase closing the fracture gap as well as the remodeling phase shaping the bone to a scar-free tissue. Detailed knowledge on processes in equine fracture healing in general and on the initial phase in particular is apparently very limited. Therefore, we generated equine in vitro fracture hematoma models (FH models) to study time-dependent changes in cell composition and RNA-expression for the most prominent cells in the FH model (immune cells, mesenchymal stromal cells) under conditions most closely adapted to the in vivo situation (hypoxia) by using flow cytometry and qPCR. In order to analyze the impact of mesenchymal stromal cells in greater detail, we also incubated blood clots without the addition of mesenchymal stromal cells under the same conditions as a control. We observed a superior survival capacity of mesenchymal stromal cells over immune cells within our FH model maintained under hypoxia. Furthermore, we demonstrate an upregulation of relevant angiogenic, osteogenic and hypoxia-induced markers within 48 h, a time well-known to be crucial for proper fracture healing.


Assuntos
Consolidação da Fratura , Fraturas Ósseas/patologia , Fraturas Ósseas/terapia , Hematoma/terapia , Hipóxia/patologia , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Animais , Biomarcadores/metabolismo , Biópsia , Sobrevivência Celular/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Hematoma/patologia , Cavalos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Oxigênio/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Regulação para Cima/efeitos dos fármacos
11.
Brain Sci ; 9(12)2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31888299

RESUMO

Chronic, excessive alcohol use alters brain gene expression patterns, which could be important for initiating, maintaining, or progressing the addicted state. It has been proposed that pharmaceuticals with opposing effects on gene expression could treat alcohol use disorder (AUD). Computational strategies comparing gene expression signatures of disease to those of pharmaceuticals show promise for nominating novel treatments. We reasoned that it may be sufficient for a treatment to target the biological pathway rather than lists of individual genes perturbed by AUD. We analyzed published and unpublished transcriptomic data using gene set enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to identify biological pathways disrupted in AUD brain and by compounds in the Library of Network-based Cellular Signatures (LINCS L1000) and Connectivity Map (CMap) databases. Several pathways were consistently disrupted in AUD brain, including an up-regulation of genes within the Complement and Coagulation Cascade, Focal Adhesion, Systemic Lupus Erythematosus, and MAPK signaling, and a down-regulation of genes within the Oxidative Phosphorylation pathway, strengthening evidence for their importance in AUD. Over 200 compounds targeted genes within those pathways in an opposing manner, more than twenty of which have already been shown to affect alcohol consumption, providing confidence in our approach. We created a user-friendly web-interface that researchers can use to identify drugs that target pathways of interest or nominate mechanism of action for drugs. This study demonstrates a unique systems pharmacology approach that can nominate pharmaceuticals that target pathways disrupted in disease states such as AUD and identify compounds that could be repurposed for AUD if sufficient evidence is attained in preclinical studies.

12.
Mol Neurobiol ; 56(4): 2791-2810, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30062672

RESUMO

Alcohol use disorder (AUD) is a complex psychiatric disorder with strong genetic and environmental risk factors. We studied the molecular perturbations underlying risky drinking behavior by measuring transcriptome changes across the neurocircuitry of addiction in a genetic mouse model of binge drinking. Sixteen generations of selective breeding for high blood alcohol levels after a binge drinking session produced global changes in brain gene expression in alcohol-naïve High Drinking in the Dark (HDID-1) mice. Using gene expression profiles to generate circuit-level hypotheses, we developed a systems approach that integrated regulation of gene coexpression networks across multiple brain regions, neuron-specific transcriptional signatures, and knowledgebase analytics. Whole-cell, voltage-clamp recordings from nucleus accumbens shell neurons projecting to the ventral tegmental area showed differential ethanol-induced plasticity in HDID-1 and control mice and provided support for one of the hypotheses. There were similarities in gene networks between HDID-1 mouse brains and postmortem brains of human alcoholics, suggesting that some gene expression patterns associated with high alcohol consumption are conserved across species. This study demonstrated the value of gene networks for data integration across biological modalities and species to study mechanisms of disease.


Assuntos
Bebedeira/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes , Genômica , Biologia de Sistemas , Animais , Encéfalo/patologia , Regulação da Expressão Gênica , Humanos , Camundongos , Anotação de Sequência Molecular , Plasticidade Neuronal , Transcriptoma/genética
13.
Front Mol Neurosci ; 11: 331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283300

RESUMO

Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors that act as transcription factors in response to endogenous lipid messengers. The fibrates and thiazolidinediones are synthetic PPAR agonists used clinically to treat dyslipidemia and Type 2 Diabetes Mellitus, respectively, but also improve symptoms of several other diseases. Transposable elements (TEs), repetitive sequences in mammalian genomes, are implicated in many of the same conditions for which PPAR agonists are therapeutic, including neurodegeneration, schizophrenia, and drug addiction. We tested the hypothesis that there is a link between actions of PPAR agonists and TE expression. We developed an innovative application of microarray data by mapping Illumina mouse WG-6 microarray probes to areas of the mouse genome that contain TEs. Using this information, we assessed the effects of systemic administration of three PPAR agonists with different PPAR subtype selectivity: fenofibrate, tesaglitazar, and bezafibrate, on TE probe expression in mouse brain [prefrontal cortex (PFC) and amygdala] and liver. We found that fenofibrate, and bezafibrate to a lesser extent, up-regulated probes mapped to retrotransposons: Short-Interspersed Elements (SINEs) and Long-Interspersed Elements (LINEs), in the PFC. Conversely, all PPAR agonists down-regulated LINEs and tesaglitazar and bezafibrate also down-regulated SINEs in liver. We built gene coexpression networks that partitioned the diverse transcriptional response to PPAR agonists into groups of probes with highly correlated expression patterns (modules). Most of the differentially expressed retrotransposons were within the same module, suggesting coordinated regulation of their expression, possibly by PPAR signaling. One TE module was conserved across tissues and was enriched with genes whose products participate in epigenetic regulation, suggesting that PPAR agonists affect TE expression via epigenetic mechanisms. Other enriched functional categories included phenotypes related to embryonic development and learning and memory, suggesting functional links between these biological processes and TE expression. In summary, these findings suggest mechanistic relationships between retrotransposons and PPAR agonists and provide a basis for future exploration of their functional roles in brain and liver.

14.
Neuropsychopharmacology ; 43(6): 1257-1266, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29251283

RESUMO

Transcriptome-based drug discovery has identified new treatments for some complex diseases, but has not been applied to alcohol use disorder (AUD) or other psychiatric diseases, where there is a critical need for improved pharmacotherapies. High Drinking in the Dark (HDID-1) mice are a genetic model of AUD risk that have been selectively bred (from the HS/Npt line) to achieve intoxicating blood alcohol levels (BALs) after binge-like drinking. We compared brain gene expression of HDID-1 and HS/Npt mice, to determine a molecular signature for genetic risk for high intensity, binge-like drinking. Using multiple computational methods, we queried LINCS-L1000 (Library of Integrated Network-Based Cellular Signatures), a database containing gene expression signatures of thousands of compounds, to predict candidate drugs with the greatest potential to decrease alcohol consumption. Our analyses predicted novel compounds for testing, many with anti-inflammatory properties, providing further support for a neuroimmune mechanism of excessive alcohol drinking. We validated the top 2 candidates in vivo as a proof-of-concept. Terreic acid (a Bruton's tyrosine kinase inhibitor) and pergolide (a dopamine and serotonin receptor agonist) robustly reduced alcohol intake and BALs in HDID-1 mice, providing the first evidence for transcriptome-based drug discovery to target an addiction trait. Effective drug treatments for many psychiatric diseases are lacking, and the emerging tools and approaches outlined here offer researchers studying complex diseases renewed opportunities to discover new or repurpose existing compounds and expedite treatment options.


Assuntos
Dissuasores de Álcool/farmacologia , Bebedeira/tratamento farmacológico , Bebedeira/metabolismo , Descoberta de Drogas/métodos , Perfilação da Expressão Gênica , Animais , Animais não Endogâmicos , Bebedeira/genética , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Masculino , Camundongos , Pergolida/farmacologia , Estudo de Prova de Conceito , Quinonas/farmacologia , Transcriptoma
15.
Alcohol ; 60: 95-101, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28433417

RESUMO

There is growing evidence that small-molecule inhibitors of epigenetic modulators, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), can reduce voluntary ethanol consumption in animal models, but molecular and cellular processes underlying this behavioral effect are poorly understood. We used C57BL/6J male mice to investigate the effects of two FDA-approved drugs, decitabine (a DNMT inhibitor) and SAHA (an HDAC inhibitor), on ethanol consumption using two tests: binge-like drinking in the dark (DID) and chronic intermittent every other day (EOD) drinking. Decitabine but not SAHA reduced ethanol consumption in both tests. We further investigated decitabine's effects on the brain's reward pathway by gene expression profiling in the ventral tegmental area (VTA), using RNA sequencing and electrophysiological recordings from VTA dopaminergic neurons. Decitabine-induced decreases in EOD drinking were associated with global changes in gene expression, implicating regulation of cerebral blood flow, extracellular matrix organization, and neuroimmune functions in decitabine actions. In addition, an in vivo administration of decitabine shortened ethanol-induced excitation of VTA dopaminergic neurons in vitro, suggesting that decitabine reduces ethanol drinking via changes in the reward pathway. Taken together, our data suggest a contribution of both neuronal and non-neuronal mechanisms in the VTA in the regulation of ethanol consumption. Decitabine and other epigenetic compounds have been approved for cancer treatment, and understanding their mechanisms of actions in the brain may assist in repurposing these drugs and developing novel therapies for central disorders, including drug addiction.


Assuntos
Consumo de Bebidas Alcoólicas/prevenção & controle , Azacitidina/análogos & derivados , Bebedeira/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Etanol/toxicidade , Área Tegmentar Ventral/efeitos dos fármacos , Potenciais de Ação , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Animais , Azacitidina/farmacologia , Comportamento Animal/efeitos dos fármacos , Bebedeira/genética , Bebedeira/metabolismo , Bebedeira/psicologia , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Decitabina , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Recompensa , Fatores de Tempo , Transcriptoma/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia , Vorinostat
16.
FASEB J ; 31(5): 1953-1963, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28122917

RESUMO

Regulation of the formation and rewiring of neural circuits by neuropeptides may require coordinated production of these signaling molecules and their receptors that may be established at the transcriptional level. Here, we address this hypothesis by comparing absolute expression levels of opioid peptides with their receptors, the largest neuropeptide family, and by characterizing coexpression (transcriptionally coordinated) patterns of these genes. We demonstrated that expression patterns of opioid genes highly correlate within and across functionally and anatomically different areas. Opioid peptide genes, compared with their receptor genes, are transcribed at much greater absolute levels, which suggests formation of a neuropeptide cloud that covers the receptor-expressed circuits. Surprisingly, we found that both expression levels and the proportion of opioid receptors are strongly lateralized in the spinal cord, interregional coexpression patterns are side specific, and intraregional coexpression profiles are affected differently by left- and right-side unilateral body injury. We propose that opioid genes are regulated as interconnected components of the same molecular system distributed between distinct anatomic regions. The striking feature of this system is its asymmetric coexpression patterns, which suggest side-specific regulation of selective neural circuits by opioid neurohormones.-Kononenko, O., Galatenko, V., Andersson, M., Bazov, I., Watanabe, H., Zhou, X. W., Iatsyshyna, A., Mityakina, I., Yakovleva, T., Sarkisyan, D., Ponomarev, I., Krishtal, O., Marklund, N., Tonevitsky, A., Adkins, D. L., Bakalkin, G. Intra- and interregional coregulation of opioid genes: broken symmetry in spinal circuits.


Assuntos
Analgésicos Opioides/metabolismo , Rede Nervosa/metabolismo , Receptores Opioides/metabolismo , Medula Espinal/metabolismo , Animais , Masculino , Neuropeptídeos/metabolismo , Dor/metabolismo , Ratos Long-Evans , Receptores Opioides/genética
17.
Alcohol ; 60: 19-30, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27865607

RESUMO

Chronic alcohol use and abuse result in widespread changes to gene expression, some of which contribute to the development of alcohol-use disorders (AUD). Gene expression is controlled, in part, by a group of regulatory systems often referred to as epigenetic factors, which includes, among other mechanisms, chemical marks made on the histone proteins around which genomic DNA is wound to form chromatin, and on nucleotides of the DNA itself. In particular, alcohol has been shown to perturb the epigenetic machinery, leading to changes in gene expression and cellular functions characteristic of AUD and, ultimately, to altered behavior. DNA modifications in particular are seeing increasing research in the context of alcohol use and abuse. To date, studies of DNA modifications in AUD have primarily looked at global methylation profiles in human brain and blood, gene-specific methylation profiles in animal models, methylation changes associated with prenatal ethanol exposure, and the potential therapeutic abilities of DNA methyltransferase inhibitors. Future studies may be aimed at identifying changes to more recently discovered DNA modifications, utilizing new methods to discriminate methylation profiles between cell types, thus clarifying how alcohol influences the methylomes of cell-type populations and how this may affect downstream processes. These studies and more in-depth probing of DNA methylation will be key to determining whether DNA-level epigenetic regulation plays a causative role in AUD and can thus be targeted for treatment of the disorder.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Alcoolismo/genética , Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/tratamento farmacológico , Alcoolismo/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Humanos
18.
Front Neurosci ; 9: 176, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26041984

RESUMO

Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction.

19.
J Gene Med ; 16(11-12): 352-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25382123

RESUMO

BACKGROUND: Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. METHODS: Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1ß or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1ß, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. RESULTS: Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1ß. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. CONCLUSIONS: We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy.


Assuntos
Ciclo-Oxigenase 2/genética , Terapia Genética , Interleucina-4/biossíntese , Osteoartrite/terapia , Transfecção , Animais , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Regulação para Baixo , Expressão Gênica , Vetores Genéticos , Cavalos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/genética , Lipopolissacarídeos/farmacologia , Osteoartrite/genética , Regiões Promotoras Genéticas
20.
Am J Case Rep ; 15: 203-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847411

RESUMO

PATIENT: Female, 41 FINAL DIAGNOSIS: Ovarian carcinoma Symptoms: Ascites • hepatomegaly • weight loss MEDICATION: - Clinical Procedure: - Specialty: Oncology. OBJECTIVE: Unusual or unexpected effect of treatment. BACKGROUND: The aim of this case report is to present the results of treatment of end-stage ovarian carcinoma in a 41-year-old women using weight loss therapy. CASE REPORT: We describe the case of a female aged 41 years with epithelial invasive ovarian cancer of III-IV stage, T3N2M1. Concurrent diseases were: abdominal carcinomatosis; hepatomegaly; ascites; condition after laparocentesis and skin-abdominal fistula; condition after 6 courses of neo-adjuvant polychemotherapy; hypertension II stage, risk factor of 3-4; dyslipidemia; and metabolic syndrome. A weight loss method based on a very-low-calorie diet and physical activity was used. Body weight was reduced from 74 kg to 53 due to loss of adipose tissue after 6 months of therapy. At the same time, the percentages of water and muscle tissue were increased significantly. While overweight was reducing, clinical, laboratory, and instrumental results were improving. As a result of the weight loss therapy, about ≈100 mm-sized ovarian cancer was transformed into smaller-sized ovarian cysts. CONCLUSIONS: An analgesic effect was also achieved without use of narcotic or non-narcotic analgesics. These cyto-reversible processes were documented by laboratory and instrumental data. The mechanisms behind these differences remain to be elucidated. Future research with a larger study cohort and longer follow-up is needed to further investigate the role of caloric restriction diet in cancer cell changes in ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...