Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 9: 690306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778245

RESUMO

Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.

2.
Front Oncol ; 11: 702642, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354950

RESUMO

Despite the recent advances in cancer patient management and in the development of targeted therapies, systemic chemotherapy is currently used as a first-line treatment for many cancer types. After an initial partial response, patients become refractory to standard therapy fostering rapid tumor progression. Compelling evidence highlights that the resistance to chemotherapeutic regimens is a peculiarity of a subpopulation of cancer cells within tumor mass, known as cancer stem cells (CSCs). This cellular compartment is endowed with tumor-initiating and metastasis formation capabilities. CSC chemoresistance is sustained by a plethora of grow factors and cytokines released by neighboring tumor microenvironment (TME), which is mainly composed by adipocytes, cancer-associated fibroblasts (CAFs), immune and endothelial cells. TME strengthens CSC refractoriness to standard and targeted therapies by enhancing survival signaling pathways, DNA repair machinery, expression of drug efflux transporters and anti-apoptotic proteins. In the last years many efforts have been made to understand CSC-TME crosstalk and develop therapeutic strategy halting this interplay. Here, we report the combinatorial approaches, which perturb the interaction network between CSCs and the different component of TME.

3.
J Nanobiotechnology ; 19(1): 6, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407593

RESUMO

BACKGROUND: Mitochondrial dysfunction is a critical factor in the onset and progression of neurodegenerative diseases. Recently, mitochondrial transplantation has been advised as an innovative and attractive strategy to transfer and replace damaged mitochondria. Here we propose, for the first time, to use rat brain extracted synaptosomes, a subcellular fraction of isolated synaptic terminal that contains mitochondria, as mitochondrial delivery systems. RESULTS: Synaptosome preparation was validated by the presence of Synaptophysin and PSD95. Synaptosomes were characterized in terms of dimension, zeta potential, polydispersity index and number of particles/ml. Nile Red or CTX-FITCH labeled synaptosomes were internalized in LAN5 recipient cells by a mechanism involving specific protein-protein interaction, as demonstrated by loss of fusion ability after trypsin treatment and using different cell lines. The loading and release ability of the synaptosomes was proved by the presence of curcumin both into synaptosomes and LAN5 cells. The vitality of mitochondria transferred by Synaptosomes was demonstrated by the presence of Opa1, Fis1 and TOM40 mitochondrial proteins and JC-1 measurements. Further, synaptosomes deliver vital mitochondria into the cytoplasm of neuronal cells as demonstrated by microscopic images, increase of TOM 40, cytochrome c, Hexokinase II mitochondrial proteins, and presence of rat mitochondrial DNA. Finally, by using synaptosomes as a vehicle, healthy mitochondria restored mitochondrial function in cells containing rotenone or CCCp damaged mitochondria. CONCLUSIONS: Taken together these results suggest that synaptosomes can be a natural vehicle for the delivery of molecules and organelles to neuronal cells. Further, the replacement of affected mitochondria with healthy ones could be a potential therapy for treating neuronal mitochondrial dysfunction-related diseases.


Assuntos
Mitocôndrias/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/ultraestrutura , Animais , Citocromos c , DNA Mitocondrial , Sistemas de Liberação de Medicamentos , Homeostase , Masculino , Potenciais da Membrana , Domínios e Motivos de Interação entre Proteínas , Ratos , Frações Subcelulares
4.
Artigo em Inglês | MEDLINE | ID: mdl-32982967

RESUMO

Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.


Assuntos
Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Glândula Tireoide/patologia , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , MicroRNAs/genética , Metástase Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Microambiente Tumoral
5.
Cancers (Basel) ; 12(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486505

RESUMO

Although improvement in early diagnosis and treatment ameliorated life expectancy of cancer patients, metastatic disease still lacks effective therapeutic approaches. Resistance to anticancer therapies stems from the refractoriness of a subpopulation of cancer cells-termed cancer stem cells (CSCs)-which is endowed with tumor initiation and metastasis formation potential. CSCs are heterogeneous and diverge by phenotypic, functional and metabolic perspectives. Intrinsic as well as extrinsic stimuli dictated by the tumor microenvironment (TME)have critical roles in determining cell metabolic reprogramming from glycolytic toward an oxidative phenotype and vice versa, allowing cancer cells to thrive in adverse milieus. Crosstalk between cancer cells and the surrounding microenvironment occurs through the interchange of metabolites, miRNAs and exosomes that drive cancer cells metabolic adaptation. Herein, we identify the metabolic nodes of CSCs and discuss the latest advances in targeting metabolic demands of both CSCs and stromal cells with the scope of improving current therapies and preventing cancer progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...