RESUMO
Crystal structures can strongly deviate from bulk states when confined into nanodomains. These deviations may deeply affect properties and reactivity and then call for a close examination. In this work, we address the case where extended crystal defects spread through a whole solid and then yield an aperiodic structure and specific reactivity. We focus on iron boride, α-FeB, whose structure has not been elucidated yet, thus hindering the understanding of its properties. We synthesize the two known phases, α-FeB and ß-FeB, in molten salts at 600 and 1100 °C, respectively. The experimental X-ray diffraction (XRD) data cannot be satisfactorily accounted for by a periodic crystal structure. We then model the compound as a stochastic assembly of layers of two structure types. Refinement of the powder XRD pattern by considering the explicit scattering interference of the different layers allows quantitative evaluation of the size of these domains and of the stacking faults between them. We, therefore, demonstrate that α-FeB is an intergrowth of nanometer-thick slabs of two structure types, ß-FeB and CrB-type structures, in similar proportions. We finally discuss the implications of this novel structure on the reactivity of the material and its ability to perform insertion reactions by comparing the reactivities of α-FeB and ß-FeB as reagents in the synthesis of a model layered material: Fe2AlB2. Using synchrotron-based in situ X-ray diffraction, we elucidate the mechanisms of the formation of Fe2AlB2. We highlight the higher reactivity of the intergrowth α-FeB in agreement with structural relationships.
RESUMO
We have investigated the early stages of the formation of iron oxide nanoparticles from iron stearate precursors in the presence of sodium stearate in an organic solvent by in situ liquid phase transmission electron microscopy (IL-TEM). Before nucleation, we have evidenced the spontaneous formation of vesicular assemblies made of iron polycation-based precursors sandwiched between stearate layers. Nucleation of iron oxide nanoparticles occurs within the walls of the vesicles, which subsequently collapse upon the consumption of the iron precursors and the growth of the nanoparticles. We then evidenced that fine control of the electron dose, and therefore of the local concentration of reactive iron species in the vicinity of the nuclei, enables controlling crystal growth and selecting the morphology of the resulting iron oxide nanoparticles. Such a direct observation of the nucleation process templated by vesicular assemblies in a hydrophobic organic solvent sheds new light on the formation process of metal oxide nanoparticles and therefore opens ways for the synthesis of inorganic colloidal systems with tunable shape and size.
RESUMO
The search for new materials is intimately linked to the development of synthesis methods. In the current urge for the sustainable synthesis of materials, taking inspiration from Nature's ways to process matter appears as a virtuous approach. In this review, we address the concept of geoinspiration for the design of new materials and the exploration of new synthesis pathways. In geoinspiration, materials scientists take inspiration from the key features of various geological systems and processes occurring in nature, to trigger the formation of artificial materials and nanomaterials. We discuss several case studies of materials and nanomaterials to highlight the basic geoinspiration concepts underlying some synthesis methods: syntheses in water and supercritical water, thermal shock syntheses, molten salt synthesis and high pressure synthesis. We show that the materials emerging from geoinspiration exhibit properties differing from materials obtained by other pathways, thus demonstrating that the field opens up avenues to new families of materials and nanomaterials. This review focuses on synthesis methodologies, by drawing connections between geosciences and materials chemistry, nanosciences, green chemistry, and environmental sciences.
Assuntos
Nanoestruturas , ÁguaRESUMO
Thermal decomposition is a very efficient synthesis strategy to obtain nanosized metal oxides with controlled structures and properties. For the iron oxide nanoparticle synthesis, it allows an easy tuning of the nanoparticle's size, shape, and composition, which is often explained by the LaMer theory involving a clear separation between nucleation and growth steps. Here, the events before the nucleation of iron oxide nanocrystals are investigated by combining different complementary in situ characterization techniques. These characterizations are carried out not only on powdered iron stearate precursors but also on a preheated liquid reaction mixture. They reveal a new nucleation mechanism for the thermal decomposition method: instead of a homogeneous nucleation, the nucleation occurs within vesicle-like-nanoreactors confining the reactants. The different steps are: 1) the melting and coalescence of iron stearate particles, leading to "droplet-shaped nanostructures" acting as nanoreactors; 2) the formation of a hitherto unobserved iron stearate crystalline phase within the nucleation temperature range, simultaneously with stearate chains loss and Fe(III) to Fe(II) reduction; 3) the formation of iron oxide nuclei inside the nanoreactors, which are then ejected from them. This mechanism paves the way toward a better mastering of the metal oxide nanoparticles synthesis and the control of their properties.
Assuntos
Nanopartículas Metálicas , Óxidos , Meios de Cultura , Compostos Férricos/química , Ferro , Nanopartículas Metálicas/química , Óxidos/química , EstearatosRESUMO
Incorporating boride nanocrystals could significantly impact the mechanical properties of aluminum alloys. Molten salts synthesis offers opportunities to fabricate superhard boride nanoparticles, which can sustain the harsh conditions during the liquid-phase design of metallic nanocomposites. Here hafnium diboride-aluminum nanocomposites are unveiled from molten salt-derived HfB2 nanoparticles sequentially dispersed in aluminum by ultrasound treatment. The structure and size of the nanocrystals are retained in the final nanocomposites, supporting their high chemical stability. Semicoherent interfaces between the nanoparticles and the matrix are then evidenced by TEM, suggesting that the nanocrystals could promote heterogeneous nucleation of Al and then limit the Al grain size to ≈20 µm. Nanoindentation measurements reveal significant grain boundary strengthening and grain refinement effects. It is finally shown that HfB2 nanoparticles also enable a decrease in matrix grain size and an increase in the hardness of the AlSi7 Cu0.5 Mg0.3 alloy. These proof-of-concept materials are paving the way to light-weight Al matrix nanocomposites doped by molten-salt synthesized nanoparticles.
RESUMO
Sodium silicide Na4Si4 is a reductive and reactive source of silicon highly relevant to designing non-oxidic silicon materials, including clathrates, various silicon allotropes, and metal silicides. Despite the importance of this compound, its production in high amounts and high purity is still a bottleneck with reported methods. In this work, we demonstrate that readily available silicon nanoparticles react with sodium hydride with a stoichiometry close to the theoretical one and at a temperature of 395 °C for shorter duration than previously reported. This enhanced reactivity of silicon nanoparticles makes the procedure robust and less dependent on experimental parameters, such as gas flow. As a result, we deliver a procedure to achieve Na4Si4 with purity of ca. 98 mol% at the gram scale. We show that this compound is an efficient precursor to deliver selectively type I and type II sodium silicon clathrates depending on the conditions of thermal decomposition.
RESUMO
Boron-rich solids exhibit specific crystal structures and unique properties, which are only very scarcely addressed in nanoparticles. In this work, we address the original inorganic structural chemistry and reactivity of boron-rich nanoparticles, by reporting the first occurrence of sodium carbaboride nanocrystals based on the NaB5C crystal structure. To design these sub-10 nm nano-objects, we use liquid-phase synthesis in molten salts at 900 °C. By combining a set of characterization tools including powder X-ray powder diffraction, transmission electron microscopy, solid-state nuclear magnetic resonance coupled to DFT modeling, and X-ray photoelectron spectroscopy, we demonstrate that these nanocrystals deviate from the ideal stoichiometry reported for the bulk compound. We suggest that the carbon and sodium contents compensate each other to ensure that the octahedral cluster-based framework is stabilized by fulfilling an electron counting rule. These nanocrystals encompass substituted octahedral covalent structural building units not reported in the related bulk compound. They then shed new light on the ability of nanoparticles to host wide solid solution ranges in covalent solids and then to yield new solids. We finally show that these nanocrystals are efficient single sources of boron and carbon to form a nanostructured boron carbide, thus paving the way to new nanostructured materials.
RESUMO
A family of iron-doped manganese-related hollandites, K x Mn1-y Fe y O2-δ (0 ≤ y ≤ 0.15), with high performance in CO oxidation have been prepared. Among them, the most active catalyst, K0.11Mn0.876Fe0.123O1.80(OH)0.09, is able to oxidize more than 50% of CO at room temperature. Detailed compositional and structural characterization studies, using a wide battery of thermogravimetric, spectroscopic, and diffractometric techniques, both at macroscopic and microscopic levels, have provided essential information about this never-reported behavior, which relates to the oxidation state of manganese. Neutron diffraction studies evidence that the above compound stabilizes hydroxyl groups at the midpoints of the tunnel edges as in isostructural ß-FeOOH. The presence of oxygen and hydroxyl species at the anion sublattice and Mn3+, confirmed by electron energy loss spectroscopy, appears to play a key role in the catalytic activity of this doped hollandite oxide. The analysis of these detailed structural features has allowed us to point out the key role of both OH groups and Mn3+ content in these materials, which are able to effectively transform CO without involving any critical, noble metal in the catalyst formulation.
RESUMO
Here, we present a correlative microscopic analysis of electrodeposited films from catechol solutions in aqueous electrolytes. The films were prepared in a miniaturized electrochemical cell and were analyzed by identical location transmission electron microscopy, scanning transmission X-ray microscopy, and atomic force microscopy. Thanks to this combined approach, we have shown that the electrodeposited films are constituted of ultrathin graphite oxide nanosheets. Detailed information about the electronic structure of the films was obtained by X-ray absorption near edge structure spectroscopy. These results show the large potential of soft electrochemical conditions for the bottom-up production of ultrathin graphite oxide nanosheet films via a one-pot green chemistry approach from simple organic building blocks.
RESUMO
Lithium borides have been synthesized exclusively through classical solid-state chemistry processes that lead to bulk materials. Indeed, due to the lack of reactivity of the solid boron precursors usually employed and to the high covalent connectivity in such solids, high temperatures and long reaction times are necessary to obtain lithium borides. These conditions result in extensive crystal growth. Here we present the synthesis of nanoparticles of a lithium boride bearing tunnel-like cavities templated by neutral Li2O species, which have been reported to be labile. To reach this goal, a liquid-phase synthesis in inorganic molten salts has been developed. The Li6B18(Li2O)x nanoparticles have been characterized by scanning and transmission electronic microscopy (SEM and TEM), X-ray diffraction (XRD), and Raman spectroscopy. We provide an in-depth structural characterization by using 1H, 7Li, and 11B solid-state nuclear magnetic resonance (NMR) coupled with DFT modeling to provide the first assignment of 7Li and 11B solid-state NMR signals in lithium borides. We then assess the nanoparticle morphology oriented along the direction of the cavities. This feature shows similarities with structurally related hexagonal tungsten bronzes and could therefore affect the electrochemical and ion exchange properties.
RESUMO
We report phase selective synthesis of intermetallic nickel silicide nanocrystals in inorganic molten salts. NiSi and Ni2Si nanocrystals are obtained by reacting a nickel(ii) salt and sodium silicide Na4Si4 in the molten LiI-KI inorganic eutectic salt mixture. We report that nickel silicide nanocrystals are precursors to active electrocatalysts in the oxygen evolution reaction (OER) and may be low-cost alternatives to iridium-based electrocatalysts.
RESUMO
New insights into the chemical and structural features of iron or titanium-doped KxMnO2 hollandites are reported. Neutron diffraction and atomically resolved transmission electron microscopy elucidate the localization of the dopant cations that could be one of the key factors governing the functional activity of these nanomaterials.
RESUMO
Unveiling the mechanism of electrocatalytic processes is fundamental for the search of more efficient and stable electrode materials for clean energy conversion devices. Although several in situ techniques are now available to track structural changes during electrocatalysis, especially of water oxidation, a direct observation, in real space, of morphological changes of nanostructured electrocatalysts is missing. Herein, we implement an in situ electrochemical Transmission Electron Microscopy (in situ EC-TEM) methodology for studying electrocatalysts of the oxygen evolution reaction (OER) during operation, by using model cobalt oxide Co3O4 nanoparticles. The observation conditions were optimized to mimic standard electrochemistry experiments in a regular electrochemical cell, allowing cyclic voltammetry and chronopotentiometry to be performed in similar conditions in situ and ex situ. This in situ EC-TEM method enables us to observe the chemical, morphological, and structural evolutions occurring in the initial nanoparticle-based electrode exposed to different aqueous electrolytes and under OER conditions. The results show that surface amorphization occurs, yielding a nanometric cobalt (oxyhydr)oxide-like phase during OER. This process is irreversible and occurs to an extent that has not been described before. Furthermore, we show that the pH and counterions of the electrolytes impact this restructuration, shedding light on the materials properties in neutral phosphate electrolytes. In addition to the structural changes followed in situ during the electrochemical measurements, this study demonstrates that it is possible to rely on in situ electrochemical TEM to reveal processes in electrocatalysts while preserving a good correlation with ex situ regular electrochemistry.
RESUMO
The inorganic chemistry of the Na-Si system at high pressure is fascinating, with a large number of interesting compounds accessible in the industrial pressure scale, below 10 GPa. In particular, Na4Si4 is stable in this whole pressure range and thus plays an important role in understanding the thermodynamics and kinetics underlying materials synthesis at high pressures and high temperatures. In the present work, the melting curve of the Zintl compound Na4Si4 made of Na+ and Si44- tetrahedral cluster ions is studied at high pressures up to 5 GPa, by using in situ electrical measurements. During melting, the insulating Na4Si4 solid transforms into an ionic conductive liquid that can be probed through the conductance of the whole high-pressure cell, i.e., the system constituted of the sample, the heater, and the high-pressure assembly. Na4Si4 melts congruently in the studied pressure range, and its melting point increases with pressure with a positive slope dTm/dp of 20(4) K/GPa.
RESUMO
N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5â h). NPs with a size distribution of 11.6±1.8â nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.
RESUMO
Magnéli phases Tin O2n-1 (3
RESUMO
Octahedral molecular sieves (OMS) are built of transition metal-oxygen octahedra that delimit sub-nanoscale cavities. Compared to other microporous solids, OMS exhibit larger versatility in properties, provided by various redox states and magnetic behaviors of transition metals. Hence, OMS offer opportunities in electrochemical energy harnessing devices, including batteries, electrochemical capacitors and electrochromic systems, provided two conditions are met: fast exchange of ions in the micropores and stability upon exchange. Here we unveil a novel OMS hexagonal polymorph of tungsten oxide called h'-WO3, built of (WO6)6 tunnel cavities. h'-WO3 is prepared by a one-step soft chemistry aqueous route leading to the hydrogen bronze h'-H0.07WO3. Gentle heating results in h'-WO3 with framework retention. The material exhibits an unusual combination of 1-dimensional crystal structure and 2-dimensional nanostructure that enhances and fastens proton (de)insertion for stable electrochromic devices. This discovery paves the way to a new family of mixed valence functional materials with tunable behaviors.
RESUMO
Inorganic nanocomposites made of an inorganic matrix containing nanoparticle inclusions provide materials of advanced mechanical, magnetic, electrical properties and multifunctionality. The range of compounds that can be implemented in nanocomposites is still narrow and new preparation methods are required to design such advanced materials. Herein, we describe how the combination of nanocrystal synthesis in molten salts with subsequent heat treatment at a pressure in the GPa range gives access to a new family of boron-based nanocomposites. With the case studies of HfB2/ß-HfB2O5 and CaB6/CaB2O4(iv), we demonstrate by X-ray diffraction and through (scanning) transmission electron microscopy the crystallization of borate matrices into rare compounds and unique nanostructured solids, while metal boride nanocrystals remain dispersed in the matrix and maintain small sizes below 30 nm, thus demonstrating a new multidisciplinary approach toward nanoscaled heterostructures.
RESUMO
The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.
RESUMO
Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H2), and a mixture of H2 and carbon dioxide (CO2) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H2 activates CoB for the catalysis of CO2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.