Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
Expert Rev Mol Diagn ; : 1-8, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-32954863

RESUMO

INTRODUCTION: The human genome contains the instructions for the development and biological homeostasis of the human organism and the genetic transmission of traits. Genome variation in human populations is the basis of evolution; individual or personal genomes vary tremendously, making each of us truly unique. AREAS COVERED: Assaying this individual variation using genomic technologies has many applications in clinical medicine, from elucidating the biology of disease to designing strategies to ameliorate perturbations from homeostasis. Detecting pathogenic rare variation in a genome may provide a molecular diagnosis that can be informative for patient management and family healthcare. EXPERT OPINION: Despite the increasing clinical use of unbiased genomic testing, including chromosome microarray analysis (CMA) with array comparative genomic hybridization (aCGH) or SNP arrays, clinical exome sequencing (cES), and whole-genome sequencing (WGS), to survey genome-wide for molecular aberrations, clinical acumen paired with an understanding of the limitations of each testing type will be needed to achieve molecular diagnoses. Potential opportunities for improving case solved rates, functionally annotating the majority of genes in the human genome, and further understanding genetic contributions to disease will empower clinical genomics and the precision medicine initiative.

3.
Nat Commun ; 11(1): 4625, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934225

RESUMO

A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway-Ribosome-associated Quality Control (RQC)-by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF's role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


Assuntos
Doenças Neuromusculares/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
4.
Hum Mutat ; 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32935419

RESUMO

KIF1A is a molecular motor for membrane-bound cargo important to the development and survival of sensory neurons. KIF1A dysfunction has been associated with several Mendelian disorders with a spectrum of overlapping phenotypes, ranging from spastic paraplegia to intellectual disability. We present a novel pathogenic in-frame deletion in the KIF1A molecular motor domain inherited by two affected siblings from an unaffected mother with apparent germline mosaicism. We identified eight additional cases with heterozygous, pathogenic KIF1A variants ascertained from a local data lake. Our data provide evidence for the expansion of KIF1A-associated phenotypes to include hip subluxation and dystonia as well as phenotypes observed in only a single case: gelastic cataplexy, coxa valga, and double collecting system. We review the literature and suggest that KIF1A dysfunction is better understood as a single neuromuscular disorder with variable involvement of other organ systems than a set of discrete disorders converging at a single locus.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32954677

RESUMO

Congenital diaphragmatic hernias (CDH) confer substantial morbidity and mortality. Genetic defects, including chromosomal anomalies, copy number variants, and sequence variants are identified in ~30% of patients with CDH. A genetic etiology is not yet found in 70% of patients, however there is a growing number of genetic syndromes and single gene disorders associated with CDH. While there have been two reported individuals with X-linked Opitz G/BBB syndrome with MID1 mutations who have CDH as an associated feature, CDH appears to be a much more prominent feature of a SPECC1L-related autosomal dominant Opitz G/BBB syndrome. Features unique to autosomal dominant Opitz G/BBB syndrome include branchial fistulae, omphalocele, and a bicornuate uterus. Here we present one new individual and five previously reported individuals with CDH found to have SPECC1L mutations. These cases provide strong evidence that SPECC1L is a bona fide CDH gene. We conclude that a SPECC1L-related Opitz G/BBB syndrome should be considered in any patient with CDH who has additional features of hypertelorism, a prominent forehead, a broad nasal bridge, anteverted nares, cleft lip/palate, branchial fistulae, omphalocele, and/or bicornuate uterus.

6.
Neurol Genet ; 6(5): e498, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802956

RESUMO

Objective: To determine how single nucleotide variants (SNVs) and copy number variants (CNVs) contribute to molecular diagnosis in familial Parkinson disease (PD), we integrated exome sequencing (ES) and genome-wide array-based comparative genomic hybridization (aCGH) and further probed CNV structure to reveal mutational mechanisms. Methods: We performed ES on 110 subjects with PD and a positive family history; 99 subjects were also evaluated using genome-wide aCGH. We interrogated ES and aCGH data for pathogenic SNVs and CNVs at Mendelian PD gene loci. We confirmed SNVs via Sanger sequencing and further characterized CNVs with custom-designed high-density aCGH, droplet digital PCR, and breakpoint sequencing. Results: Using ES, we discovered individuals with known pathogenic SNVs in GBA (p.Glu365Lys, p.Thr408Met, p.Asn409Ser, and p.Leu483Pro) and LRRK2 (p.Arg1441Gly and p.Gly2019Ser). Two subjects were each double heterozygotes for variants in GBA and LRRK2. Based on aCGH, we additionally discovered cases with an SNCA duplication and heterozygous intragenic GBA deletion. Five additional subjects harbored both SNVs (p.Asn52Metfs*29, p.Thr240Met, p.Pro437Leu, and p.Trp453*) and likely disrupting CNVs at the PRKN locus, consistent with compound heterozygosity. In nearly all cases, breakpoint sequencing revealed microhomology, a mutational signature consistent with CNV formation due to DNA replication errors. Conclusions: Integrated ES and aCGH yielded a genetic diagnosis in 19.3% of our familial PD cohort. Our analyses highlight potential mechanisms for SNCA and PRKN CNV formation, uncover multilocus pathogenic variation, and identify novel SNVs and CNVs for further investigation as potential PD risk alleles.

7.
Mol Genet Genomic Med ; : e1397, 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32730690

RESUMO

BACKGROUND: Resources within the Undiagnosed Diseases Network (UDN), such as genome sequencing (GS) and model organisms aid in diagnosis and identification of new disease genes, but are currently difficult to access by clinical providers. While these resources do contribute to diagnoses in many cases, they are not always necessary to reach diagnostic resolution. The UDN experience has been that participants can also receive diagnoses through the thoughtful and customized application of approaches and resources that are readily available in clinical settings. METHODS: The UDN Genetic Counseling and Testing Working Group collected case vignettes that illustrated how clinically available methods resulted in diagnoses. The case vignettes were classified into three themes; phenotypic considerations, selection of genetic testing, and evaluating exome/GS variants and data. RESULTS: We present 12 participants that illustrate how clinical practices such as phenotype-driven genomic investigations, consideration of variable expressivity, selecting the relevant tissue of interest for testing, utilizing updated testing platforms, and recognition of alternate transcript nomenclature resulted in diagnoses. CONCLUSION: These examples demonstrate that when a diagnosis is elusive, an iterative patient-specific approach utilizing assessment options available to clinical providers may solve a portion of cases. However, this does require increased provider time commitment, a particular challenge in the current practice of genomics.

8.
Genet Med ; 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32655138

RESUMO

PURPOSE: The goal of this study was to assess the scale of low-level parental mosaicism in exome sequencing (ES) databases. METHODS: We analyzed approximately 2000 family trio ES data sets from the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) and Baylor Genetics (BG). Among apparent de novo single-nucleotide variants identified in the affected probands, we selected rare unique variants with variant allele fraction (VAF) between 30% and 70% in the probands and lower than 10% in one of the parents. RESULTS: Of 102 candidate mosaic variants validated using amplicon-based next-generation sequencing, droplet digital polymerase chain reaction, or blocker displacement amplification, 27 (26.4%) were confirmed to be low- (VAF between 1% and 10%) or very low (VAF <1%) level mosaic. Detection precision in parental samples with two or more alternate reads was 63.6% (BHCMG) and 43.6% (BG). In nine investigated individuals, we observed variability of mosaic ratios among blood, saliva, fibroblast, buccal, hair, and urine samples. CONCLUSION: Our computational pipeline enables robust discrimination between true and false positive candidate mosaic variants and efficient detection of low-level mosaicism in ES samples. We confirm that the presence of two or more alternate reads in the parental sample is a reliable predictor of low-level parental somatic mosaicism.

9.
Genet Med ; 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32699352

RESUMO

PURPOSE: Biallelic variants in LARS1, coding for the cytosolic leucyl-tRNA synthetase, cause infantile liver failure syndrome 1 (ILFS1). Since its description in 2012, there has been no systematic analysis of the clinical spectrum and genetic findings. METHODS: Individuals with biallelic variants in LARS1 were included through an international, multicenter collaboration including novel and previously published patients. Clinical variables were analyzed and functional studies were performed in patient-derived fibroblasts. RESULTS: Twenty-five individuals from 15 families were ascertained including 12 novel patients with eight previously unreported variants. The most prominent clinical findings are recurrent elevation of liver transaminases up to liver failure and encephalopathic episodes, both triggered by febrile illness. Magnetic resonance image (MRI) changes during an encephalopathic episode can be consistent with metabolic stroke. Furthermore, growth retardation, microcytic anemia, neurodevelopmental delay, muscular hypotonia, and infection-related seizures are prevalent. Aminoacylation activity is significantly decreased in all patient cells studied upon temperature elevation in vitro. CONCLUSION: ILFS1 is characterized by recurrent elevation of liver transaminases up to liver failure in conjunction with abnormalities of growth, blood, nervous system, and musculature. Encephalopathic episodes with seizures can occur independently from liver crises and may present with metabolic stroke.

11.
Kidney Int ; 98(4): 1020-1030, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32450157

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUTs) are the most common cause of chronic kidney disease in children. Human 16p11.2 deletions have been associated with CAKUT, but the responsible molecular mechanism remains to be illuminated. To explore this, we investigated 102 carriers of 16p11.2 deletion from multi-center cohorts, among which we retrospectively ascertained kidney morphologic and functional data from 37 individuals (12 Chinese and 25 Caucasian/Hispanic). Significantly higher CAKUT rates were observed in 16p11.2 deletion carriers (about 25% in Chinese and 16% in Caucasian/Hispanic) than those found in the non-clinically ascertained general populations (about 1/1000 found at autopsy). Furthermore, we identified seven additional individuals with heterozygous loss-of-function variants in TBX6, a gene that maps to the 16p11.2 region. Four of these seven cases showed obvious CAKUT. To further investigate the role of TBX6 in kidney development, we engineered mice with mutated Tbx6 alleles. The Tbx6 heterozygous null (i.e., loss-of-function) mutant (Tbx6+/‒) resulted in 13% solitary kidneys. Remarkably, this incidence increased to 29% in a compound heterozygous model (Tbx6mh/‒) that reduced Tbx6 gene dosage to below haploinsufficiency, by combining the null allele with a novel mild hypomorphic allele (mh). Renal hypoplasia was also frequently observed in these Tbx6-mutated mouse models. Thus, our findings in patients and mice establish TBX6 as a novel gene involved in CAKUT and its gene dosage insufficiency as a potential driver for kidney defects observed in the 16p11.2 microdeletion syndrome.

12.
Eur J Hum Genet ; 28(9): 1243-1264, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32376988

RESUMO

Previously we reported the identification of a homozygous COL27A1 (c.2089G>C; p.Gly697Arg) missense variant and proposed it as a founder allele in Puerto Rico segregating with Steel syndrome (STLS, MIM #615155); a rare osteochondrodysplasia characterized by short stature, congenital bilateral hip dysplasia, carpal coalitions, and scoliosis. We now report segregation of this variant in five probands from the initial clinical report defining the syndrome and an additional family of Puerto Rican descent with multiple affected adult individuals. We modeled the orthologous variant in murine Col27a1 and found it recapitulates some of the major Steel syndrome associated skeletal features including reduced body length, scoliosis, and a more rounded skull shape. Characterization of the in vivo murine model shows abnormal collagen deposition in the extracellular matrix and disorganization of the proliferative zone of the growth plate. We report additional COL27A1 pathogenic variant alleles identified in unrelated consanguineous Turkish kindreds suggesting Clan Genomics and identity-by-descent homozygosity contributing to disease in this population. The hypothesis that carrier states for this autosomal recessive osteochondrodysplasia may contribute to common complex traits is further explored in a large clinical population cohort. Our findings augment our understanding of COL27A1 biology and its role in skeletal development; and expand the functional allelic architecture in this gene underlying both rare and common disease phenotypes.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32233023

RESUMO

BACKGROUND: Wolff-Parkinson-White (WPW) syndrome is a relatively common arrhythmia affecting ~1-3/1,000 individuals. Mutations in PRKAG2 have been described in rare patients in association with cardiomyopathy. However, the genetic basis of WPW in individuals with a structurally normal heart remains poorly understood. Sudden death due to atrial fibrillation (AF) can also occur in these individuals. Several studies have indicated that despite ablation of an accessory pathway, the risk of AF remains high in patients compared to general population. METHODS: We applied exome sequencing in 305 subjects, including 65 trios, 80 singletons, and 6 multiple affected families. We used de novo analysis, candidate gene approach, and burden testing to explore the genetic contributions to WPW. RESULTS: A heterozygous deleterious variant in PRKAG2 was identified in one subject, accounting for 0.6% (1/151) of the genetic basis of WPW in this study. Another individual with WPW and left ventricular hypertrophy carried a known pathogenic variant in MYH7. We found rare de novo variants in genes associated with arrhythmia and cardiomyopathy (ANK2, NEBL, PITX2, and PRDM16) in this cohort. There was an increased burden of rare deleterious variants (MAF ≤ 0.005) with CADD score ≥ 25 in genes linked to AF in cases compared to controls (P = .0023). CONCLUSIONS: Our findings show an increased burden of rare deleterious variants in genes linked to AF in WPW syndrome, suggesting that genetic factors that determine the development of accessory pathways may be linked to an increased susceptibility of atrial muscle to AF in a subset of patients.

14.
Ann Clin Transl Neurol ; 7(5): 610-627, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32286009

RESUMO

OBJECTIVE: Defects in ion channels and neurotransmitter receptors are implicated in developmental and epileptic encephalopathy (DEE). Metabotropic glutamate receptor 7 (mGluR7), encoded by GRM7, is a presynaptic G-protein-coupled glutamate receptor critical for synaptic transmission. We previously proposed GRM7 as a candidate disease gene in two families with neurodevelopmental disorders (NDDs). One additional family has been published since. Here, we describe three additional families with GRM7 biallelic variants and deeply characterize the associated clinical neurological and electrophysiological phenotype and molecular data in 11 affected individuals from six unrelated families. METHODS: Exome sequencing and family-based rare variant analyses on a cohort of 220 consanguineous families with NDDs revealed three families with GRM7 biallelic variants; three additional families were identified through literature search and collaboration with a clinical molecular laboratory. RESULTS: We compared the observed clinical features and variants of 11 affected individuals from the six unrelated families. Identified novel deleterious variants included two homozygous missense variants (c.2671G>A:p.Glu891Lys and c.1973G>A:p.Arg685Gln) and one homozygous stop-gain variant (c.1975C>T:p.Arg659Ter). Developmental delay, neonatal- or infantile-onset epilepsy, and microcephaly were universal. Three individuals had hypothalamic-pituitary-axis dysfunction without pituitary structural abnormality. Neuroimaging showed cerebral atrophy and hypomyelination in a majority of cases. Two siblings demonstrated progressive loss of myelination by 2 years in both and an acquired microcephaly pattern in one. Five individuals died in early or late childhood. CONCLUSION: Detailed clinical characterization of 11 individuals from six unrelated families demonstrates that rare biallelic GRM7 pathogenic variants can cause DEEs, microcephaly, hypomyelination, and cerebral atrophy.

15.
Brain ; 143(1): 112-130, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794024

RESUMO

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.

16.
J Neurointerv Surg ; 12(2): 221-226, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31401562

RESUMO

BACKGROUND: Genetic risk factors play an important role in the pathogenesis of familial intracranial aneurysms (FIAs); however, the molecular mechanisms remain largely unknown. OBJECTIVE: To investigate potential FIA-causing genetic variants by rare variant interrogation and a family-based genomics approach in a large family with an extensive multigenerational pedigree with FIAs. METHOD: Exome sequencing (ES) was performed in a dominant likely family with intracranial aneurysms (IAs). Variants were analyzed by an in-house developed pipeline and prioritized using various filtering strategies, including population frequency, variant type, and predicted variant pathogenicity. Sanger sequencing was also performed to evaluate the segregation of the variants with the phenotype. RESULTS: Based on the ES data obtained from five individuals from a family with 7/21 living members affected with IAs, a total of 14 variants were prioritized as candidate variants. Familial segregation analysis revealed that NFX1 c.2519T>C (p.Leu840Pro) segregated in accordance with Mendelian expectations with the phenotype within the family-that is, present in all IA-affected cases and absent from all unaffected members of the second generation. This missense variant is absent from public databases (1000genome, ExAC, gnomAD, ESP5400), and has damaging predictions by bioinformatics tools (Gerp ++ score = 5.88, CADD score = 16.43, MutationTaster score = 1, LRT score = 0). In addition, 840Leu in NFX1 is robustly conserved in mammals and maps in a region before the RING-type zinc finger domain. CONCLUSION: NFX1 c.2519T>C (p.Leu840Pro) may contribute to the pathogenetics of a subset of FIAs.

17.
Hum Mutat ; 41(1): 182-195, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31471994

RESUMO

Congenital scoliosis (CS) is a birth defect with variable clinical and anatomical manifestations due to spinal malformation. The genetic etiology underlying about 10% of CS cases in the Chinese population is compound inheritance by which the gene dosage is reduced below that of haploinsufficiency. In this genetic model, the trait manifests as a result of the combined effect of a rare variant and common pathogenic variant allele at a locus. From exome sequencing (ES) data of 523 patients in Asia and two patients in Texas, we identified six TBX6 gene-disruptive variants from 11 unrelated CS patients via ES and in vitro functional testing. The in trans mild hypomorphic allele was identified in 10 of the 11 subjects; as anticipated these 10 shared a similar spinal deformity of hemivertebrae. The remaining case has a homozygous variant in TBX6 (c.418C>T) and presents a more severe spinal deformity phenotype. We found decreased transcriptional activity and abnormal cellular localization as the molecular mechanisms for TBX6 missense loss-of-function alleles. Expanding the mutational spectrum of TBX6 pathogenic alleles enabled an increased molecular diagnostic detection rate, provided further evidence for the gene dosage-dependent genetic model underlying CS, and refined clinical classification.

18.
Hum Mutat ; 41(3): 641-654, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31769566

RESUMO

Visceral myopathy with abnormal intestinal and bladder peristalsis includes a clinical spectrum with megacystis-microcolon intestinal hypoperistalsis syndrome and chronic intestinal pseudo-obstruction. The vast majority of cases are caused by dominant variants in ACTG2; however, the overall genetic architecture of visceral myopathy has not been well-characterized. We ascertained 53 families, with visceral myopathy based on megacystis, functional bladder/gastrointestinal obstruction, or microcolon. A combination of targeted ACTG2 sequencing and exome sequencing was used. We report a molecular diagnostic rate of 64% (34/53), of which 97% (33/34) is attributed to ACTG2. Strikingly, missense mutations in five conserved arginine residues involving CpG dinucleotides accounted for 49% (26/53) of disease in the cohort. As a group, the ACTG2-negative cases had a more favorable clinical outcome and more restricted disease. Within the ACTG2-positive group, poor outcomes (characterized by total parenteral nutrition dependence, death, or transplantation) were invariably due to one of the arginine missense alleles. Analysis of specific residues suggests a severity spectrum of p.Arg178>p.Arg257>p.Arg40 along with other less-frequently reported sites p.Arg63 and p.Arg211. These results provide genotype-phenotype correlation for ACTG2-related disease and demonstrate the importance of arginine missense changes in visceral myopathy.

19.
Mol Genet Genomic Med ; 8(1): e1023, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31774634

RESUMO

BACKGROUND: The molecular and genetic mechanisms by which different single nucleotide variant alleles in specific genes, or at the same genetic locus, cause distinct disease phenotypes often remain unclear. Allelic truncating mutations of FBN1 could cause either classical Marfan syndrome (MFS) or a more complicated phenotype associated with Marfanoid-progeroid-lipodystrophy syndrome (MPLS). METHODS: We investigated a small cohort, encompassing two classical MFS and one MPLS subjects from China, whose clinical presentation included scoliosis potentially requiring surgical intervention. Targeted next generation sequencing was performed on all the participants. We analyzed the molecular diagnosis, clinical features, and the potential molecular mechanism involved in the MPLS subject in our cohort. RESULTS: We report a novel de novo FBN1 mutation for the first Chinese subject with MPLS, a more complicated fibrillinopathy, and two subjects with more classical MFS. We further predict that the MPLS truncating mutation, and others previously reported, is prone to escape the nonsense-mediated decay (NMD), while MFS mutations are predicted to be subjected to NMD. Also, the MPLS mutation occurs within the glucogenic hormone asprosin domain of FBN1. In vitro experiments showed that the single MPLS mutation p.Glu2759Cysfs*9 appears to perturb proper FBN1 protein aggregation as compared with the classical MFS mutation p.Tyr2596Thrfs*86. Both mutations appear to upregulate SMAD2 phosphorylation in vitro. CONCLUSION: We provide direct evidence that a dominant-negative interaction of FBN1 potentially explains the complex MPLS phenotypes through genetic and functional analysis. Our study expands the mutation spectrum of FBN1 and highlights the potential molecular mechanism for MPLS.

20.
Hum Mutat ; 41(2): 487-501, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31692161

RESUMO

Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap complicating the clinical diagnosis. Whole-exome sequencing (WES) has increased the overall diagnostic rate considerably. However, the upper limit of this method remains ill-defined, hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 predominantly adult and sporadic-onset patients, expanded the total number of cases to 260, and introduced analyses for copy number variation and repeat expansion in a representative subset. For new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar neurological phenotypes report comparable rates. This consistency across multiple cohorts suggests that, despite continued technical and analytical advancements, an approximately 50% diagnostic rate marks a relative ceiling for current WES-based methods and a more comprehensive genome-wide assessment is needed to identify the missing causative genetic etiologies for cerebellar ataxia and related neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA