Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
2.
Genet Med ; 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385670

RESUMO

PURPOSE: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. METHODS: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. RESULTS: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. CONCLUSION: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.

3.
Pediatr Diabetes ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34387403

RESUMO

OBJECTIVE: Commercial gene panels identify pathogenic variants in as low as 27% of patients suspected to have MODY, suggesting the role of yet unidentified pathogenic variants. We sought to identify novel gene variants associated with MODY. RESEARCH DESIGN AND METHODS: We recruited 10 children with a clinical suspicion of MODY but non-diagnostic commercial MODY gene panels. We performed exome sequencing (ES) in them and their parents. RESULTS: Mean age at diabetes diagnosis was 10 (± 3.8) years. Six were females; 4 were non-Hispanic white, 5 Hispanic, and 1 Asian. Our variant prioritization analysis identified a pathogenic, de novo variant in INS (c.94G > A, p.Gly32Ser), confirmed by Sanger sequencing, in a proband who was previously diagnosed with "autoantibody-negative type 1 diabetes (T1D)" at 3 y/o. This rare variant, absent in the general population (gnomAD database), has been reported previously in neonatal diabetes. We also identified a frameshift deletion (c.2650delC, p.Gln884AsnfsTer57) in RFX6 in a child with a previous diagnosis of "autoantibody-negative T1D" at 12 y/o. The variant was inherited from the mother, who was diagnosed with "thin type 2 diabetes" at 25 y/o. Heterozygous protein-truncating variants in RFX6 gene have been recently reported in individuals with MODY. CONCLUSIONS: We diagnosed two patients with MODY using ES in children initially classified as "T1D". One has a likely pathogenic novel gene variant not previously associated with MODY. We demonstrate the clinical utility of ES in patients with clinical suspicion of MODY.

4.
Orphanet J Rare Dis ; 16(1): 365, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34407837

RESUMO

BACKGROUND: With the advent of whole exome (ES) and genome sequencing (GS) as tools for disease gene discovery, rare variant filtering, prioritization and data sharing have become essential components of the search for disease genes and variants potentially contributing to disease phenotypes. The computational storage, data manipulation, and bioinformatic interpretation of thousands to millions of variants identified in ES and GS, respectively, is a challenging task. To aid in that endeavor, we constructed PhenoDB, GeneMatcher and VariantMatcher. RESULTS: PhenoDB is an accessible, freely available, web-based platform that allows users to store, share, analyze and interpret their patients' phenotypes and variants from ES/GS data. GeneMatcher is accessible to all stakeholders as a web-based tool developed to connect individuals (researchers, clinicians, health care providers and patients) around the globe with interest in the same gene(s), variant(s) or phenotype(s). Finally, VariantMatcher was developed to enable public sharing of variant-level data and phenotypic information from individuals sequenced as part of multiple disease gene discovery projects. Here we provide updates on PhenoDB and GeneMatcher applications and implementation and introduce VariantMatcher. CONCLUSION: Each of these tools has facilitated worldwide data sharing and data analysis and improved our ability to connect genes to phenotypic traits. Further development of these platforms will expand variant analysis, interpretation, novel disease-gene discovery and facilitate functional annotation of the human genome for clinical genomics implementation and the precision medicine initiative.

5.
Am J Med Genet A ; 185(8): 2532-2540, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089229

RESUMO

The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.

6.
Hum Genet ; 140(9): 1299-1312, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185153

RESUMO

Genetic defects of innate immunity impairing intestinal bacterial sensing are linked to the development of Inflammatory Bowel Disease (IBD). Although much evidence supports a role of the intestinal virome in gut homeostasis, most studies focus on intestinal viral composition rather than on host intestinal viral sensitivity. To demonstrate the association between the development of Very Early Onset IBD (VEOIBD) and variants in the IFIH1 gene which encodes MDA5, a key cytosolic sensor for viral nucleic acids. Whole exome sequencing (WES) was performed in two independent cohorts of children with VEOIBD enrolled in Italy (n = 18) and USA (n = 24). Luciferase reporter assays were employed to assess MDA5 activity. An enrichment analysis was performed on IFIH1 comparing 42 VEOIBD probands with 1527 unrelated individuals without gastrointestinal or immunological issues. We identified rare, likely loss-of-function (LoF), IFIH1 variants in eight patients with VEOIBD from a combined cohort of 42 children. One subject, carrying a homozygous truncating variant resulting in complete LoF, experienced neonatal-onset, pan-gastrointestinal, IBD-like enteropathy plus multiple infectious episodes. The remaining seven subjects, affected by VEOIBD without immunodeficiency, were carriers of one LoF variant in IFIH1. Among these, two patients also carried a second hypomorphic variant, with partial function apparent when MDA5 was weakly stimulated. Furthermore, IFIH1 variants were significantly enriched in children with VEOIBD as compared to controls (p = 0.007). Complete and partial MDA5 deficiency is associated with VEOIBD with variable penetrance and expressivity, suggesting a role for impaired intestinal viral sensing in IBD pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais/genética , Helicase IFIH1 Induzida por Interferon/genética , Mutação com Perda de Função , Pré-Escolar , Feminino , Humanos , Lactente , Itália , Masculino , Sequenciamento Completo do Genoma
7.
Am J Hum Genet ; 108(7): 1239-1250, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34129815

RESUMO

Despite release of the GRCh38 human reference genome more than seven years ago, GRCh37 remains more widely used by most research and clinical laboratories. To date, no study has quantified the impact of utilizing different reference assemblies for the identification of variants associated with rare and common diseases from large-scale exome-sequencing data. By calling variants on both the GRCh37 and GRCh38 references, we identified single-nucleotide variants (SNVs) and insertion-deletions (indels) in 1,572 exomes from participants with Mendelian diseases and their family members. We found that a total of 1.5% of SNVs and 2.0% of indels were discordant when different references were used. Notably, 76.6% of the discordant variants were clustered within discrete discordant reference patches (DISCREPs) comprising only 0.9% of loci targeted by exome sequencing. These DISCREPs were enriched for genomic elements including segmental duplications, fix patch sequences, and loci known to contain alternate haplotypes. We identified 206 genes significantly enriched for discordant variants, most of which were in DISCREPs and caused by multi-mapped reads on the reference assembly that lacked the variant call. Among these 206 genes, eight are implicated in known Mendelian diseases and 53 are associated with common phenotypes from genome-wide association studies. In addition, variant interpretations could also be influenced by the reference after lifting-over variant loci to another assembly. Overall, we identified genes and genomic loci affected by reference assembly choice, including genes associated with Mendelian disorders and complex human diseases that require careful evaluation in both research and clinical applications.


Assuntos
Exoma , Genoma Humano , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Doenças Genéticas Inatas/genética , Humanos , Valores de Referência
8.
Genet Med ; 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113008

RESUMO

PURPOSE: ADP ribosylation factor guanine nucleotide exchange factors (ARFGEFs) are a family of proteins implicated in cellular trafficking between the Golgi apparatus and the plasma membrane through vesicle formation. Among them is ARFGEF1/BIG1, a protein involved in axon elongation, neurite development, and polarization processes. ARFGEF1 has been previously suggested as a candidate gene for different types of epilepsies, although its implication in human disease has not been well characterized. METHODS: International data sharing, in silico predictions, and in vitro assays with minigene study, western blot analyses, and RNA sequencing. RESULTS: We identified 13 individuals with heterozygous likely pathogenic variants in ARFGEF1. These individuals displayed congruent clinical features of developmental delay, behavioral problems, abnormal findings on brain magnetic resonance image (MRI), and epilepsy for almost half of them. While nearly half of the cohort carried de novo variants, at least 40% of variants were inherited from mildly affected parents who were clinically re-evaluated by reverse phenotyping. Our in silico predictions and in vitro assays support the contention that ARFGEF1-related conditions are caused by haploinsufficiency, and are transmitted in an autosomal dominant fashion with variable expressivity. CONCLUSION: We provide evidence that loss-of-function variants in ARFGEF1 are implicated in sporadic and familial cases of developmental delay with or without epilepsy.

10.
J Genet Genomics ; 48(5): 396-402, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34006472

RESUMO

Short stature is among the most common endocrinological disease phenotypes of childhood and may occur as an isolated finding or in conjunction with other clinical manifestations. Although the diagnostic utility of clinical genetic testing in short stature has been implicated, the genetic architecture and the utility of genomic studies such as exome sequencing (ES) in a sizable cohort of patients with short stature have not been investigated systematically. In this study, we recruited 561 individuals with short stature from two centers in China during a 4-year period. We performed ES for all patients and available parents. All patients were retrospectively divided into two groups: an isolated short stature group (group I, n = 257) and an apparently syndromic short stature group (group II, n = 304). Causal variants were identified in 135 of 561 (24.1%) patients. In group I, 29 of 257 (11.3%) of the patients were solved by variants in 24 genes. In group II, 106 of 304 (34.9%) patients were solved by variants in 57 genes. Genes involved in fundamental cellular process played an important role in the genetic architecture of syndromic short stature. Distinct genetic architectures and pathophysiological processes underlie isolated and syndromic short stature.

11.
Am J Med Genet A ; 185(7): 1972-1980, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797191

RESUMO

Biallelic loss-of-function (LoF) of SLC13A5 (solute carrier family 13, member 5) induced deficiency in sodium/citrate transporter (NaCT) causes autosomal recessive developmental epileptic encephalopathy 25 with hypoplastic amelogenesis imperfecta (DEE25; MIM #615905). Many pathogenic SLC13A5 single nucleotide variants (SNVs) and small indels have been described; however, no cases with copy number variants (CNVs) have been sufficiently investigated. We describe a consanguineous Iraqi family harboring an 88.5 kb homozygous deletion including SLC13A5 in Chr17p13.1. The three affected male siblings exhibit neonatal-onset epilepsy with fever-sensitivity, recurrent status epilepticus, global developmental delay/intellectual disability (GDD/ID), and other variable neurological findings as shared phenotypical features of DEE25. Two of the three affected subjects exhibit hypoplastic amelogenesis imperfecta (AI), while the proband shows no evidence of dental abnormalities or AI at 2 years of age with apparently unaffected primary dentition. Characterization of the genomic architecture at this locus revealed evidence for genomic instability generated by an Alu/Alu-mediated rearrangement; confirmed by break-point junction Sanger sequencing. This multiplex family from a distinct population elucidates the phenotypic consequence of complete LoF of SLC13A5 and illustrates the importance of read-depth-based CNV detection in comprehensive exome sequencing analysis to solve cases that otherwise remain molecularly unsolved.

12.
Am J Med Genet A ; 185(7): 2037-2045, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33847457

RESUMO

Spectrins are common components of cytoskeletons, binding to cytoskeletal elements and the plasma membrane, allowing proper localization of essential membrane proteins, signal transduction, and cellular scaffolding. Spectrins are assembled from α and ß subunits, encoded by SPTA1 and SPTAN1 (α) and SPTB, SPTBN1, SPTBN2, SPTBN4, and SPTBN5 (ß). Pathogenic variants in various spectrin genes are associated with erythroid cell disorders (SPTA1, SPTB) and neurologic disorders (SPTAN1, SPTBN2, and SPTBN4), but no phenotypes have been definitively associated with variants in SPTBN1 or SPTBN5. Through exome sequencing and case matching, we identified seven unrelated individuals with heterozygous SPTBN1 variants: two with de novo missense variants and five with predicted loss-of-function variants (found to be de novo in two, while one was inherited from a mother with a history of learning disabilities). Common features include global developmental delays, intellectual disability, and behavioral disturbances. Autistic features (4/6) and epilepsy (2/7) or abnormal electroencephalogram without overt seizures (1/7) were present in a subset. Identification of loss-of-function variants suggests a haploinsufficiency mechanism, but additional functional studies are required to fully elucidate disease pathogenesis. Our findings support the essential roles of SPTBN1 in human neurodevelopment and expand the knowledge of human spectrinopathy disorders.

13.
Hum Mutat ; 42(6): 762-776, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33847017

RESUMO

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing ß-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.

14.
Genet Med ; 23(6): 1028-1040, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33658631

RESUMO

PURPOSE: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. METHODS: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. RESULTS: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. CONCLUSION: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno Autístico , Deficiência Intelectual , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Humanos , Deficiência Intelectual/genética , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/genética
15.
Hum Mutat ; 42(5): 577-591, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33644933

RESUMO

Xia-Gibbs syndrome (XGS) is a rare Mendelian disease typically caused by de novo stop-gain or frameshift mutations in the AT-hook DNA binding motif containing 1 (AHDC1) gene. Patients usually present in early infancy with hypotonia and developmental delay and later exhibit intellectual disability (ID). The overall presentation is variable, however, and the emerging clinical picture is still evolving. A detailed phenotypic analysis of 34 XGS individuals revealed five core phenotypes (delayed motor milestones, speech delay, low muscle tone, ID, and hypotonia) in more than 80% of individuals and an additional 12 features that occurred more variably. Seizures and scoliosis were more frequently associated with truncations that arise before the midpoint of the protein although the occurrence of most features could not be predicted by the mutation position. Transient expression of wild type and different patient truncated AHDC1 protein forms in human cell lines revealed abnormal patterns of nuclear localization including a diffuse distribution of a short truncated form and nucleolar aggregation in mid-protein truncated forms. Overall, both the occurrence of variable phenotypes and the different distribution of the expressed protein reflect the heterogeneity of this syndrome.

16.
Hum Genet ; 140(7): 1011-1029, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710394

RESUMO

The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.


Assuntos
Exoma/genética , Deficiência Intelectual/genética , Família , Feminino , Finlândia , Genes Recessivos/genética , Predisposição Genética para Doença/genética , Genótipo , Homozigoto , Humanos , Masculino , Linhagem , Sequenciamento Completo do Exoma/métodos
17.
Am J Med Genet A ; 185(5): 1388-1398, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33576134

RESUMO

Distal 1q21.1 microdeletions have shown highly variable clinical expressivity and incomplete penetrance, with affected individuals manifesting a broad spectrum of nonspecific features. The goals of this study were to better describe the phenotypic spectrum of patients with distal 1q21.1 microdeletions and to compare the clinical features among affected individuals. We performed a retrospective chart review of 47 individuals with distal 1q21.1 microdeletions tested at a large clinical genetic testing laboratory, with most patients being clinically evaluated in the same children's hospital. Health information such as growth charts, results of imaging studies, developmental history, and progress notes were collected. Statistical analysis was performed using Fisher's exact test to compare clinical features among study subjects. Common features in our cohort include microcephaly (51.2%), seizures (29.8%), developmental delay (74.5%), failure to thrive (FTT) (68.1%), dysmorphic features (63.8%), and a variety of congenital anomalies such as cardiac abnormalities (23.4%) and genitourinary abnormalities (19.1%). Compared to prior literature, we found that seizures, brain anomalies, and FTT were more prevalent among our study cohort. Females were more likely than males to have microcephaly (p = 0.0199) and cardiac abnormalities (p = 0.0018). Based on existing genome-wide clinical testing results, at least a quarter of the cohort had additional genetic findings that may impact the phenotype of the individual. Our study represents the largest cohort of distal 1q21.1 microdeletion carriers available in the literature thus far, and it further illustrates the wide spectrum of clinical manifestations among symptomatic individuals. These results may allow for improved genetic counseling and management of affected individuals. Future studies may help to elucidate the underlying molecular mechanisms impacting the phenotypic variability observed with this microdeletion.


Assuntos
Anormalidades Múltiplas/genética , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Microcefalia/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/fisiopatologia , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Insuficiência de Crescimento/complicações , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/fisiopatologia , Feminino , Aconselhamento Genético , Testes Genéticos/métodos , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/fisiopatologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/fisiopatologia , Masculino , Megalencefalia/complicações , Megalencefalia/diagnóstico , Megalencefalia/fisiopatologia , Microcefalia/complicações , Microcefalia/diagnóstico , Microcefalia/fisiopatologia , Linhagem , Convulsões/complicações , Convulsões/genética , Convulsões/fisiopatologia , Adulto Jovem
18.
Am J Med Genet A ; 185(4): 1288-1293, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33544954

RESUMO

Alkylated DNA repair protein AlkB homolog 8 (ALKBH8) is a member of the AlkB family of dioxygenases. ALKBH8 is a methyltransferase of the highly variable wobble nucleoside position in the anticodon loop of tRNA and thus plays a critical role in tRNA modification by preserving codon recognition and preventing errors in amino acid incorporation during translation. Moreover, its activity catalyzes uridine modifications that are proposed to be critical for accurate protein translation. Previously, two distinct homozygous truncating variants in the final exon of ALKBH8 were described in two unrelated large Saudi Arabian kindreds with intellectual developmental disorder and autosomal recessive 71 (MRT71) syndrome (MIM# 618504). Here, we report a third family-of Egyptian descent-harboring a novel homozygous frame-shift variant in the last exon of ALKBH8. Two affected siblings in this family exhibit global developmental delay and intellectual disability as shared characteristic features of MRT71 syndrome, and we further characterize their observed dysmorphic features and brain MRI findings. This description of a third family with a truncating ALKBH8 variant from a distinct population broadens the phenotypic and genotypic spectrum of MRT71 syndrome, affirms that perturbations in tRNA biogenesis can contribute to neurogenetic disease traits, and firmly establishes ALKBH8 as a novel neurodevelopmental disease gene.


Assuntos
Homólogo AlkB 8 da RNAt Metiltransferase/genética , Encéfalo/diagnóstico por imagem , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/patologia , Linhagem
19.
Am J Hum Genet ; 108(2): 337-345, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33434492

RESUMO

Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is associated with congenital absence of the uterus, cervix, and the upper part of the vagina; it is a sex-limited trait. Disrupted development of the Müllerian ducts (MD)/Wölffian ducts (WD) through multifactorial mechanisms has been proposed to underlie MRKHS. In this study, exome sequencing (ES) was performed on a Chinese discovery cohort (442 affected subjects and 941 female control subjects) and a replication MRKHS cohort (150 affected subjects of mixed ethnicity from North America, South America, and Europe). Phenotypic follow-up of the female reproductive system was performed on an additional cohort of PAX8-associated congenital hypothyroidism (CH) (n = 5, Chinese). By analyzing 19 candidate genes essential for MD/WD development, we identified 12 likely gene-disrupting (LGD) variants in 7 genes: PAX8 (n = 4), BMP4 (n = 2), BMP7 (n = 2), TBX6 (n = 1), HOXA10 (n = 1), EMX2 (n = 1), and WNT9B (n = 1), while LGD variants in these genes were not detected in control samples (p = 1.27E-06). Interestingly, a sex-limited penetrance with paternal inheritance was observed in multiple families. One additional PAX8 LGD variant from the replication cohort and two missense variants from both cohorts were revealed to cause loss-of-function of the protein. From the PAX8-associated CH cohort, we identified one individual presenting a syndromic condition characterized by CH and MRKHS (CH-MRKHS). Our study demonstrates the comprehensive utilization of knowledge from developmental biology toward elucidating genetic perturbations, i.e., rare pathogenic alleles involving the same loci, contributing to human birth defects.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Ductos Paramesonéfricos/anormalidades , Ductos Paramesonéfricos/crescimento & desenvolvimento , Mutação , Ductos Mesonéfricos/crescimento & desenvolvimento , Adulto , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 7/genética , Códon sem Sentido , Feminino , Estudos de Associação Genética , Pleiotropia Genética , Proteínas Homeobox A10/genética , Proteínas de Homeodomínio/genética , Humanos , Fator de Transcrição PAX8/genética , Herança Paterna , Penetrância , Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Proteínas Wnt/genética , Ductos Mesonéfricos/anormalidades
20.
Ann Neurol ; 89(4): 828-833, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33443317

RESUMO

The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.


Assuntos
Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Distonia/genética , Complexo Mediador/genética , Malformações do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Catarata/genética , Criança , Pré-Escolar , Epilepsia/genética , Variação Genética , Humanos , Lactente , Fenótipo , Sequenciamento Completo do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...