Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Viruses ; 13(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34696391

RESUMO

Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections in young children and infection has been linked to the development of persistent lung disease in the form of wheezing and asthma. Despite substantial research efforts, there are no RSV vaccines currently available and an effective monoclonal antibody targeting the RSV fusion protein (palivizumab) is of limited general use given the associated expense. Therefore, the development of novel approaches to prevent RSV infection is highly desirable to improve pediatric health globally. We have developed a method to generate alveolar-like macrophages (ALMs) from pluripotent stem cells. These ALMs have shown potential to promote airway innate immunity and tissue repair and so we hypothesized that ALMs could be used as a strategy to prevent RSV infection. Here, we demonstrate that ALMs are not productively infected by RSV and prevent the infection of epithelial cells. Prevention of epithelial infection was mediated by two different mechanisms: phagocytosis of RSV particles and release of an antiviral soluble factor different from type I interferon. Furthermore, intratracheal administration of ALMs protected mice from subsequent virus-induced weight loss and decreased lung viral titres and inflammation, indicating that ALMs can impair the pathogenesis of RSV infection. Our results support a prophylactic role for ALMs in the setting of RSV infection and warrant further studies on stem cell-derived ALMs as a novel cell-based therapy for pulmonary viral infections.

2.
Hum Mol Genet ; 30(22): 2161-2176, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34230964

RESUMO

Severe respiratory impairment is a prominent feature of Rett syndrome, an X-linked disorder caused by mutations in methyl CpG-binding protein 2 (MECP2). Despite MECP2's ubiquitous expression, respiratory anomalies are attributed to neuronal dysfunction. Here, we show that neutral lipids accumulate in mouse Mecp2-mutant lungs, whereas surfactant phospholipids decrease. Conditional deletion of Mecp2 from lipid-producing alveolar epithelial 2 (AE2) cells causes aberrant lung lipids and respiratory symptoms, whereas deletion of Mecp2 from hindbrain neurons results in distinct respiratory abnormalities. Single-cell RNA sequencing of AE2 cells suggests lipid production and storage increase at the expense of phospholipid synthesis. Lipid production enzymes are confirmed as direct targets of MECP2-directed nuclear receptor co-repressor 1/2 transcriptional repression. Remarkably, lipid-lowering fluvastatin improves respiratory anomalies in Mecp2-mutant mice. These data implicate autonomous pulmonary loss of MECP2 in respiratory symptoms for the first time and have immediate impacts on patient care.

3.
Am J Physiol Lung Cell Mol Physiol ; 321(3): L507-L517, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34189953

RESUMO

Premature infants often require mechanical ventilation and oxygen therapy, which can result in bronchopulmonary dysplasia (BPD), characterized by developmental arrest and impaired lung function. Conventional clinical methods for assessing the prenatal lung are not adequate for the detection and assessment of long-term health risks in infants with BPD, highlighting the need for a noninvasive tool for the characterization of lung microstructure and function. Theoretical diffusion models, like the model of xenon exchange (MOXE), interrogate alveolar gas exchange by predicting the uptake of inert hyperpolarized (HP) 129Xe gas measured with HP 129Xe magnetic resonance spectroscopy (MRS). To investigate HP 129Xe MRS as a tool for noninvasive characterization of pulmonary microstructural and functional changes in vivo, HP 129Xe gas exchange data were acquired in an oxygen exposure rat model of BPD that recapitulates the fewer and larger distal airways and pulmonary vascular stunting characteristics of BPD. Gas exchange parameters from MOXE, including airspace mean chord length (Lm), apparent hematocrit in the pulmonary capillaries (HCT), and pulmonary capillary transit time (tx), were compared with airspace mean axis length and area density (MAL and ρA) and percentage area of tissue and air (PTA and PAA) from histology. Lm was significantly larger in the exposed rats (P = 0.003) and correlated with MAL, ρA, PTA, and PAA (0.59<|ρ|<0.66 and P < 0.05). Observed increase in HCT (P = 0.012) and changes in tx are also discussed. These findings support the use of HP 129Xe MRS for detecting fewer, enlarged distal airways in this rat model of BPD, and potentially in humans.


Assuntos
Displasia Broncopulmonar/metabolismo , Capilares/metabolismo , Pulmão/metabolismo , Espectroscopia de Ressonância Magnética , Troca Gasosa Pulmonar , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/patologia , Capilares/patologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/irrigação sanguínea , Pulmão/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Isótopos de Xenônio
4.
Front Cell Dev Biol ; 9: 652607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055782

RESUMO

The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.

5.
Front Cell Dev Biol ; 9: 652651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017832

RESUMO

Aberrant ceramide build-up in preeclampsia, a serious disorder of pregnancy, causes exuberant autophagy-mediated trophoblast cell death. The significance of ceramide accumulation for lysosomal biogenesis in preeclampsia is unknown. Here we report that lysosome formation is markedly increased in trophoblast cells of early-onset preeclamptic placentae, in particular in syncytiotrophoblasts. This is accompanied by augmented levels of transcription factor EB (TFEB). In vitro and in vivo experiments demonstrate that ceramide increases TFEB expression and nuclear translocation and induces lysosomal formation and exocytosis. Further, we show that TFEB directly regulates the expression of lysosomal sphingomyelin phosphodiesterase (L-SMPD1) that degrades sphingomyelin to ceramide. In early-onset preeclampsia, ceramide-induced lysosomal exocytosis carries L-SMPD1 to the apical membrane of the syncytial epithelium, resulting in ceramide accumulation in lipid rafts and release of active L-SMPD1 via ceramide-enriched exosomes into the maternal circulation. The SMPD1-containing exosomes promote endothelial activation and impair endothelial tubule formation in vitro. Both exosome-induced processes are attenuated by SMPD1 inhibitors. These findings suggest that ceramide-induced lysosomal biogenesis and exocytosis in preeclamptic placentae contributes to maternal endothelial dysfunction, characteristic of this pathology.

6.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804806

RESUMO

Peritoneal resident macrophages play a key role in combating sepsis in the peritoneal cavity. We sought to determine if peritoneal transplantation of embryonic Myb- "peritoneal-like" macrophages attenuate abdominal fecal sepsis. Directed differentiation of rodent pluripotent stem cells (PSCs) was used in factor-defined media to produce embryonic-derived large "peritoneal-like" macrophages (Ed-LPM) that expressed peritoneal macrophage markers and demonstrated phagocytic capacity. Preclinical in vivo studies determined Ed-LPM efficacy in rodent abdominal fecal sepsis with or without Meropenem. Ex vivo studies explored the mechanism and effects of Ed-LPM on host immune cell number and function, including phagocytosis, reactive oxygen species (ROS) production, efferocytosis and apoptosis. Ed-LPM reduced sepsis severity by decreasing bacterial load in the liver, spleen and lungs. Ed-LPM therapy significantly improved animal survival by ~30% and reduced systemic bacterial burden to levels comparable to Meropenem therapy. Ed-LPM therapy decreased peritoneal TNFα while increasing IL-10 concentrations. Ed-LPMs enhanced peritoneal macrophage phagocytosis of bacteria, increased macrophage production of ROS and restored homeostasis via apoptosis and efferocytosis-induced clearance of neutrophils. In conclusion, Ed-LPM reduced systemic sepsis severity, improved survival and reduced bacterial load by enhancing peritoneal macrophage bacterial phagocytosis and killing and clearance of intra-peritoneal neutrophils. Macrophage therapy may be a potential strategy to address sepsis.


Assuntos
Carga Bacteriana , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas c-myb/deficiência , Sepse/etiologia , Sepse/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Contagem de Leucócitos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/imunologia , Prognóstico , Ratos , Sepse/diagnóstico , Sepse/mortalidade , Índice de Gravidade de Doença
7.
NPJ Regen Med ; 6(1): 12, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674599

RESUMO

The use of decellularized whole-organ scaffolds for bioengineering of organs is a promising avenue to circumvent the shortage of donor organs for transplantation. However, recellularization of acellular scaffolds from multicellular organs like the lung with a variety of different cell types remains a challenge. Multipotent cells could be an ideal cell source for recellularization. Here we investigated the hierarchical differentiation process of multipotent ES-derived endoderm cells into proximal airway epithelial cells on acellular lung scaffolds. The first cells to emerge on the scaffolds were TP63+ cells, followed by TP63+/KRT5+ basal cells, and finally multi-ciliated and secretory airway epithelial cells. TP63+/KRT5+ basal cells on the scaffolds simultaneously expressed KRT14, like basal cells involved in airway repair after injury. Removal of TP63 by CRISPR/Cas9 in the ES cells halted basal and airway cell differentiation on the scaffolds. These findings suggest that differentiation of ES-derived endoderm cells into airway cells on decellularized lung scaffolds proceeds via TP63+ basal cell progenitors and tracks a regenerative repair pathway. Understanding the process of differentiation is key for choosing the cell source for repopulation of a decellularized organ scaffold. Our data support the use of airway basal cells for repopulating the airway side of an acellular lung scaffold.

8.
Am J Respir Crit Care Med ; 203(10): 1266-1274, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33406012

RESUMO

Rationale: The physiological basis of lung protection and the impact of positive end-expiratory pressure (PEEP) during pronation in acute respiratory distress syndrome are not fully elucidated. Objectives: To compare pleural pressure (Ppl) gradient, ventilation distribution, and regional compliance between dependent and nondependent lungs, and investigate the effect of PEEP during supination and pronation. Methods: We used a two-hit model of lung injury (saline lavage and high-volume ventilation) in 14 mechanically ventilated pigs and studied supine and prone positions. Global and regional lung mechanics including Ppl and distribution of ventilation (electrical impedance tomography) were analyzed across PEEP steps from 20 to 3 cm H2O. Two pigs underwent computed tomography scans: tidal recruitment and hyperinflation were calculated. Measurements and Main Results: Pronation improved oxygenation, increased Ppl, thus decreasing transpulmonary pressure for any PEEP, and reduced the dorsal-ventral pleural pressure gradient at PEEP < 10 cm H2O. The distribution of ventilation was homogenized between dependent and nondependent while prone and was less dependent on the PEEP level than while supine. The highest regional compliance was achieved at different PEEP levels in dependent and nondependent regions in supine position (15 and 8 cm H2O), but for similar values in prone position (13 and 12 cm H2O). Tidal recruitment was more evenly distributed (dependent and nondependent), hyperinflation lower, and lungs cephalocaudally longer in the prone position. Conclusions: In this lung injury model, pronation reduces the vertical pleural pressure gradient and homogenizes regional ventilation and compliance between the dependent and nondependent regions. Homogenization is much less dependent on the PEEP level in prone than in supine positon.


Assuntos
Posicionamento do Paciente , Respiração com Pressão Positiva , Decúbito Ventral , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , Decúbito Dorsal , Animais , Modelos Animais de Doenças , Complacência Pulmonar/fisiologia , Lesão Pulmonar/complicações , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Cavidade Pleural/fisiopatologia , Síndrome do Desconforto Respiratório/etiologia , Mecânica Respiratória/fisiologia , Suínos
9.
Am J Respir Crit Care Med ; 203(8): 969-976, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091317

RESUMO

Rationale: Asymmetrical lung injury is a frequent clinical presentation. Regional distribution of Vt and positive end-expiratory pressure (PEEP) could result in hyperinflation of the less-injured lung. The validity of esophageal pressure (Pes) is unknown.Objectives: To compare, in asymmetrical lung injury, Pes with directly measured pleural pressures (Ppl) of both sides and investigate how PEEP impacts ventilation distribution and the regional driving transpulmonary pressure (inspiratory - expiratory).Methods: Fourteen mechanically ventilated pigs with lung injury were studied. One lung was blocked while the contralateral one underwent surfactant lavage and injurious ventilation. Airway pressure and Pes were measured, as was Ppl in the dorsal and ventral pleural space adjacent to each lung. Distribution of ventilation was assessed by electrical impedance tomography. PEEP was studied through decremental steps.Measurements and Results: Ventral and dorsal Ppl were similar between the injured and the noninjured lung across all PEEP levels. Dorsal Ppl and Pes were similar. The driving transpulmonary pressure was similar in the two lungs. Vt distribution between lungs was different at zero end-expiratory pressure (≈70% of Vt going in noninjured lung) owing to different respiratory system compliance (8.3 ml/cm H2O noninjured lung vs. 3.7 ml/cm H2O injured lung). PEEP at 10 cm H2O with transpulmonary pressure around zero homogenized Vt distribution opening the lungs. PEEP ≥16 cm H2O equalized distribution of Vt but with overdistension for both lungs.Conclusions: Despite asymmetrical lung injury, Ppl between injured and noninjured lungs is equalized and esophageal pressure is a reliable estimate of dorsal Ppl. Driving transpulmonary pressure is similar for both lungs. Vt distribution results from regional respiratory system compliance. Moderate PEEP homogenizes Vt distribution between lungs without generating hyperinflation.


Assuntos
Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Respiração com Pressão Positiva/métodos , Respiração Artificial/métodos , Mecânica Respiratória/fisiologia , Suínos , Animais , Modelos Animais
10.
Pediatr Res ; 89(3): 518-525, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32413891

RESUMO

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a lethal congenital lung disorder associated with heterozygous variants in the FOXF1 gene or its regulatory region. Patients with ACD/MPV unnecessarily undergo invasive and expensive treatments while awaiting a diagnosis. The aim of this study was to reduce the time to diagnose ACD/MPV by developing a targeted next-generation sequencing (NGS) panel that detects FOXF1 variants. METHODS: A FOXF1-targeted NGS panel was developed for detection of mutations and large genomic alterations and used for retrospective testing of ACD/MPV patients and controls. Results were confirmed with Sanger sequencing and SNP array analysis. RESULTS: Each amplicon of the FOXF1-targeted NGS panel was efficiently sequenced using DNA isolated from blood or cell lines of 15 ACD/MPV patients and 8 controls. Moreover, testing of ACD/MPV patients revealed six novel and six previously described pathogenic or likely pathogenic FOXF1 alterations. CONCLUSION: We successfully designed a fast and reliable targeted genetic test to detect variants in the FOXF1 gene and its regulatory region in one run. This relatively noninvasive test potentially prevents unnecessary suffering for patients and reduces the use of futile and expensive treatments like extra-corporeal membrane oxygenation. IMPACT: FOXF1-targeted NGS potentially prevents ACD/MPV patients from unnecessary suffering and expensive treatments. FOXF1-targeted NGS potentially reduces the number of misdiagnosis in ACD/MPV patients. Retrospective testing of ACD/MPV patients using FOXF1-targeted NGS revealed six novel pathogenic or likely pathogenic variants.

12.
World J Biol Psychiatry ; 21(7): 529-538, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462949

RESUMO

Objectives: Maternal-foetal tryptophan metabolism plays multiple roles in neurodevelopment and immunomodulation across pregnancy. Tryptophan and the immune system are both influenced by the seasons of the year. We thus compared tryptophan and kynurenine levels in subgroups of pregnant women defined by maternal seasonality and season-of-conception (SoC).Methods: Maternal plasma samples taken at 9-15 and 23-29 weeks of pregnancy were analysed in 47 women with historical full or sub-syndromal Seasonal Affective Disorder (SAD) and 144 pregnant controls. Repeated measure ANCOVAs compared tryptophan and kynurenine levels in the two study groups over the two pregnancy sampling times, using SoC as a moderator.Results: Significant differences in both plasma tryptophan and kynurenine were found across the eight subgroups defined by maternal seasonality and SoC. These results were independent of the state of depression.Conclusions: Pregnant women with a history of full or sub-syndromal SAD exhibited a different pattern of plasma tryptophan and kynurenine across the seasons compared to control mothers, independent of current mood state. Follow-up of the children will determine the implications of these findings for neurodevelopment and psychiatric risk. Maternal seasonality and SoC may be important considerations when studying tryptophan and its metabolites in human pregnancy and foetal brain development.


Assuntos
Cinurenina , Transtorno Afetivo Sazonal , Feminino , Humanos , Mães , Plasma , Gravidez , Triptofano
13.
Artigo em Inglês | MEDLINE | ID: mdl-32144130

RESUMO

INTRODUCTION: Gestational diabetes mellitus (GDM), a common pregnancy disorder, increases the risk of fetal overgrowth and later metabolic morbidity in the offspring. The placenta likely mediates these sequelae, but the exact mechanisms remain elusive. Mitochondrial dynamics refers to the joining and division of these organelles, in attempts to maintain cellular homeostasis in stress conditions or alterations in oxygen and fuel availability. These remodeling processes are critical to optimize mitochondrial function, and their disturbances characterize diabetes and obesity. METHODS AND RESULTS: Herein we show that placental mitochondrial dynamics are tilted toward fusion in GDM, as evidenced by transmission electron microscopy and changes in the expression of key mechanochemical enzymes such as OPA1 and active phosphorylated DRP1. In vitro experiments using choriocarcinoma JEG-3 cells demonstrated that increased exposure to insulin, which typifies GDM, promotes mitochondrial fusion. As placental ceramide induces mitochondrial fission in pre-eclampsia, we also examined ceramide content in GDM and control placentae and observed a reduction in placental ceramide enrichment in GDM, likely due to an insulin-dependent increase in ceramide-degrading ASAH1 expression. CONCLUSIONS: Placental mitochondrial fusion is enhanced in GDM, possibly as a compensatory response to maternal and fetal metabolic derangements. Alterations in placental insulin exposure and sphingolipid metabolism are among potential contributing factors. Overall, our results suggest that GDM has profound impacts on placental mitochondrial dynamics and metabolism, with plausible implications for the short-term and long-term health of the offspring.


Assuntos
Diabetes Gestacional/fisiopatologia , Dinâmica Mitocondrial , Placenta/fisiopatologia , Linhagem Celular , Ceramidas/metabolismo , Diabetes Gestacional/metabolismo , Feminino , Homeostase , Humanos , Insulina/administração & dosagem , Insulina/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Placenta/metabolismo , Placenta/ultraestrutura , Gravidez
14.
Magn Reson Med ; 83(4): 1356-1367, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31556154

RESUMO

PURPOSE: To measure regional changes in hyperpolarized 129 Xe MRI signal and apparent transverse relaxation ( T 2 ∗ ) because of instillation of SPION-labeled alveolar-like macrophages (ALMs) in the lungs of rats and compare to histology. METHODS: MRI was performed in 6 healthy mechanically ventilated rats before instillation, as well as 5 min and 1 h after instillation of 4 million SPION-labeled ALMs into either the left or right lung. T 2 ∗ maps were calculated from 2D multi-echo data at each time point and changes in T 2 ∗ were measured and compared to control rats receiving 4 million unlabeled ALMs. Histology of the ex vivo lungs was used to compare the regional MRI findings with the locations of the SPION-labeled ALMs. RESULTS: Regions of signal loss were observed immediately after instillation of unlabeled and SPION-labeled ALMs and persisted at least 1 h in the case of the SPION-labeled ALMs. This was reflected in the measurements of T 2 ∗ . One hour after the instillation of SPION-labeled ALMs, the T 2 ∗ decreased to 54.0 ± 7.0% of the baseline, compared to a full recovery to baseline after the instillation of unlabeled ALMs. Histology confirmed the co-localization of SPION-labeled ALMs with regions of signal loss and T 2 ∗ decreases for each rat. CONCLUSION: Hyperpolarized 129 Xe MRI can detect the presence of SPION-labeled ALMs in the airways 1 h after instillation. This approach is promising for targeting and tracking of stem cells for the treatment of lung disease.


Assuntos
Nanopartículas de Magnetita , Animais , Células-Tronco Embrionárias , Pulmão/diagnóstico por imagem , Macrófagos , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Ratos
15.
J Tissue Eng Regen Med ; 14(3): 521-538, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826325

RESUMO

A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.


Assuntos
Diferenciação Celular , Matriz Extracelular , Regeneração , Engenharia Tecidual , Tecidos Suporte/química , Matriz Extracelular/química , Matriz Extracelular/transplante , Humanos
16.
Sci Rep ; 9(1): 13450, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530844

RESUMO

Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.


Assuntos
Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Pulmão/citologia , Proteinose Alveolar Pulmonar/congênito , Proteína B Associada a Surfactante Pulmonar/deficiência , Diferenciação Celular , Células Epiteliais/fisiologia , Fibroblastos/citologia , Marcadores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Lentivirus/genética , Organoides , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/terapia , Alvéolos Pulmonares/citologia , Proteína B Associada a Surfactante Pulmonar/genética
17.
J Clin Invest ; 129(7): 2904-2919, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31162135

RESUMO

Bronchopulmonary dysplasia (BPD) remains a major respiratory illness in extremely premature infants. The biological mechanisms leading to BPD are not fully understood, although an arrest in lung development has been implicated. The current study aimed to investigate the occurrence of autophagy in the developing mouse lung and its regulatory role in airway branching and terminal sacculi formation. We found 2 windows of epithelial autophagy activation in the developing mouse lung, both resulting from AMPK activation. Inhibition of AMPK-mediated autophagy led to reduced lung branching in vitro. Conditional deletion of beclin 1 (Becn1) in mouse lung epithelial cells (Becn1Epi-KO), either at early (E10.5) or late (E16.5) gestation, resulted in lethal respiratory distress at birth or shortly after. E10.5 Becn1Epi-KO lungs displayed reduced airway branching and sacculi formation accompanied by impaired vascularization, excessive epithelial cell death, reduced mesenchymal thinning of the interstitial walls, and delayed epithelial maturation. E16.5 Becn1Epi-KO lungs had reduced terminal air sac formation and vascularization and delayed distal epithelial differentiation, a pathology similar to that seen in infants with BPD. Taken together, our findings demonstrate that intrinsic autophagy is an important regulator of lung development and morphogenesis and may contribute to the BPD phenotype when impaired.


Assuntos
Morte Celular Autofágica , Displasia Broncopulmonar/embriologia , Pulmão/embriologia , Organogênese , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patologia , Pulmão/patologia , Camundongos , Camundongos Knockout
18.
Sci Rep ; 9(1): 9027, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227724

RESUMO

Cell lineage conversion of fibroblasts to specialized cell types through transdifferentiation may provide a fast and alternative cell source for regenerative medicine. Here we show that transient transduction of fibroblasts with the four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) in addition to the early lung transcription factor Nkx2-1 (also known as Ttf1), followed by directed differentiation of the cells, can convert mouse embryonic and human adult dermal fibroblasts into induced lung-like epithelial cells (iLEC). These iLEC differentiate into multiple lung cell types in air liquid interface cultures, repopulate decellularized rat lung scaffolds, and form lung epithelia composed of Ciliated, Goblet, Basal, and Club cells after transplantation into immune-compromised mice. As proof-of-concept, differentiated human iLEC harboring the Cystic Fibrosis mutation dF508 demonstrated pharmacological rescue of CFTR function using the combination of lumacaftor and ivacaftor. Overall, this is a promising alternative approach for generation of patient-specific lung-like progenitors to study lung function, disease and future regeneration strategies.


Assuntos
Transdiferenciação Celular , Reprogramação Celular , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Células Epiteliais/citologia , Fibroblastos/citologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Pulmão/citologia , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Medicina Regenerativa/métodos , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo
19.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996134

RESUMO

Human placenta development and a successful pregnancy is incumbent upon precise oxygen-dependent control of trophoblast migration/invasion. Persistent low oxygen leading to failed trophoblast invasion promotes inadequate spiral artery remodeling, a characteristic of preeclampsia. Angiomotin (AMOT) is a multifaceted scaffolding protein involved in cell polarity and migration, yet its upstream regulation and significance in the human placenta remain unknown. Herein, we show that AMOT is primarily expressed in migratory extravillous trophoblast cells (EVTs) of the intermediate and distal anchoring column. Its expression increases after 10 weeks of gestation when oxygen tension rises and EVT migration/invasion peaks. Time-lapse imaging confirmed that the AMOT 80-kDa isoform promotes migration of trophoblastic JEG3 and HTR-8/SVneo cells. In preeclampsia, however, AMOT expression is decreased and its localization to migratory fetomaternal interface EVTs is disrupted. We demonstrate that Jumonji C domain-containing protein 6 (JMJD6), an oxygen sensor, positively regulates AMOT via oxygen-dependent lysyl hydroxylation. Furthermore, in vitro and ex vivo studies show that transforming growth factor-ß (TGF-ß) regulates AMOT expression, its interaction with polarity protein PAR6, and its subcellular redistribution from tight junctions to cytoskeleton. Our data reveal an oxygen- and TGF-ß-driven migratory function for AMOT in the human placenta, and implicate its deficiency in impaired trophoblast migration that plagues preeclampsia.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Oxigênio/metabolismo , Pré-Eclâmpsia/patologia , Trofoblastos/patologia , Linhagem Celular Tumoral , Movimento Celular , Suscetibilidade a Doenças , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Microscopia Intravital , Histona Desmetilases com o Domínio Jumonji/metabolismo , Masculino , Placentação , Gravidez , Primeiro Trimestre da Gravidez , Isoformas de Proteínas/metabolismo , Imagem com Lapso de Tempo , Trofoblastos/metabolismo
20.
Front Immunol ; 10: 416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30918508

RESUMO

Background: Inherited defects in adenosine deaminase (ADA) cause severe immune deficiency, which can be corrected by ADA enzyme replacement therapy (ERT). Additionally, ADA-deficient patients suffer from hearing impairment. We hypothesized that ADA-deficient (-/-) mice also exhibit hearing abnormalities and that ERT from an early age will improve the hearing and immune defects in these mice. Methods: Auditory brainstem evoked responses, organ weights, thymocytes numbers, and subpopulations, lymphocytes in peripheral blood as well as T lymphocytes in spleen were analyzed in ADA-/- and ADA-proficient littermate post-partum (pp). The cochlea was visualized by scanning electron microscopy (SEM). The effects of polyethylene glycol conjugated ADA (PEG-ADA) ERT or 40% oxygen initiated at 7 days pp on the hearing and immune abnormalities were assessed. Results: Markedly abnormal hearing thresholds responses were found in ADA-/- mice at low and medium tone frequencies. SEM demonstrated extensive damage to the cochlear hair cells of ADA-/- mice, which were splayed, short or missing, correlating with the hearing deficits. The hearing defects were not reversed when hypoxia in ADA-/- mice was corrected. Progressive immune abnormalities were detected in ADA-/- mice from 4 days pp, initially affecting the thymus followed by peripheral lymphocytes and T cells in the spleen. ERT initiated at 7 days pp significantly improved the hearing of ADA-/- mice as well as the number of thymocytes and T lymphocytes, although not all normalized. Conclusions: ADA deficiency is associated with hearing deficits and damage to cochlear hair cells. Early initiation of ERT improves the hearing and immune abnormalities.


Assuntos
Adenosina Desaminase/deficiência , Adenosina Desaminase/farmacologia , Agamaglobulinemia/complicações , Agamaglobulinemia/imunologia , Células Ciliadas Auditivas/patologia , Perda Auditiva/etiologia , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/imunologia , Adenosina Desaminase/imunologia , Agamaglobulinemia/patologia , Animais , Terapia de Reposição de Enzimas , Camundongos , Camundongos Knockout , Imunodeficiência Combinada Severa/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...