Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500779

RESUMO

Up-regulated expression of programmed death-ligand 1 (PD-L1) by interferon-gamma (IFN-γ) has been associated with promotion of cancer cell survival and tumor cell escape from anti-tumor immunity. Therefore, a blockade of PD-L1 expression can potentially be used as a molecular target for cancer therapy. The aim of this study was to investigate whether suppression of IFN-γ induced PD-L1 expression in two oral cancer cell lines, HN6 and HN15, by hesperidin effectively decreased cell proliferation and migration. Further, our objective was to elucidate the involvement of the signal transducer and activator of transcription 1 (STAT1) and STAT3 in the inhibition of induced PD-L1 expression by hesperidin. Our findings indicate that IFN-γ induced expression of PD-L1 protein in HN6 and HN15 via phosphorylation of STAT1 and STAT3 and that hesperidin significantly reduced that induction through suppression of phosphorylated STAT1 and STAT3 in both cell lines. Moreover, hesperidin also significantly decreased the viability, proliferation, migration, and invasion of both cell lines. In conclusion, hesperidin exerted anticancer effects against oral cancer cells through the suppression of PD-L1 expression via inactivation of the STAT1 and STAT3 signaling molecules. The findings of this study support the use of hesperidin as a potential adjunctive treatment for oral cancer.

2.
Front Endocrinol (Lausanne) ; 12: 726182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512554

RESUMO

Preclinical studies have found impaired osteogenic differentiation to be associated with type 2 diabetes (T2DM), which is related to skeletal accumulation of advanced glycation end products (AGEs). Our previous study also showed impaired osteogenic differentiation in peripheral blood-derived mononuclear cells (PBMC) isolated from patients with long-standing T2DM, which is conceivably due to the overexpression of receptor of advance glycation end products (RAGE) and the enhancement of cellular apoptosis. However, the existence of RAGE overexpression in earlier stages of diabetes remains unclear, as do the factors influencing that RAGE overexpression. This cross-sectional study enrolled 40 patients with T2DM treated with metformin monotherapy and 30 age-matched non-diabetic controls (NDM) to investigate the overexpression of RAGE in PBMC derived from patients with earlier stage diabetes, as well as to explore its determining factors. Almost all (90%) PBMC-isolated from NDM (NDM-pD) expressed osteoblast-specific genes including ALPL, BGLAP, COL1A1, and RUNX2/PPAR while only 40% of PBMC-derived from diabetic patients (DM-pD) expressed those genes. By using age- and pentosidine-matched NDM-pD as a reference, AGER and BAX/BCL2 expression in PBMC isolated from diabetic patients showing impaired osteoblast-specific gene expression (DM-iD) were 6.6 and 5 folds higher than the reference while AGER and BAX/BCL2 expression in DM-pD were comparable to the reference. AGER expression showed a significant positive correlation with age (r=0.470, p=0.003). The multivariate analysis demonstrated that both age and AGER expression correlated with the potential for osteogenic differentiation in the PBMC isolated from patients with diabetes. In conclusion, this study showed osteogenic differentiation impairment in approximately half of PBMC derived from type 2 diabetic patients receiving metformin monotherapy. Both AGER and BAX/BCL2 overexpression were demonstrated only in PBMC-isolated from diabetic patients with poor osteogenic differentiation. Therefore, this study not only illustrated the existence of RAGE overexpression in PBMC derived from patients with early stages of T2DM but also strengthened the linkage between that RAGE overexpression and the retardation of osteogenic differentiation. Age was also shown to be a positive influencing factor for RAGE overexpression. Furthermore, both age and RAGE overexpression were demonstrated as independent risk factors for determining osteogenic differentiation potential of the PBMC-isolated from T2DM.

3.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445462

RESUMO

Liver cancer is the sixth most common cancer worldwide with high morbidity and mortality. Programmed death ligand 1 (PD-L1) is a major ligand of programmed death 1 receptor (PD1), and PD1/PD-L1 checkpoint acts as a negative regulator of the immune system. Cancers evade the host's immune defense via PD-L1 expression. This study aimed to investigate the effects of tumor-related cytokines, interferon gamma (IFNγ), and tumor necrosis factor alpha (TNFα) on PD-L1 expression in human hepatocellular carcinoma cells, HepG2. Furthermore, as atorvastatin, a cholesterol-lowering agent, is documented for its immunomodulatory properties, its effect on PD-L1 expression was investigated. In this study, through real-time RT-PCR, Western blot, and immunocytochemistry methods, PD-L1 expression in both mRNA and protein levels was found to be synergistically upregulated in HepG2 by a combination of IFNγ and TNFα, and STAT1 activation was mainly responsible for that synergistic effect. Next, atorvastatin can inhibit the induction of PD-L1 by either IFNγ alone or IFNγ/TNFα combination treatment in HepG2 cells. In conclusion, in HepG2 cells, expression of PD-L1 was augmented by cytokines in the tumor microenvironment, and the effect of atorvastatin on tumor immune response through inhibition of PD-L1 induction should be taken into consideration in cancer patients who have been prescribed atorvastatin.


Assuntos
Atorvastatina/farmacologia , Antígeno B7-H1/imunologia , Carcinoma Hepatocelular/imunologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/imunologia , Proteínas de Neoplasias/imunologia , Antígeno B7-H1/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/imunologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética
4.
Curr Issues Mol Biol ; 43(1): 93-106, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067064

RESUMO

Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.

5.
FASEB J ; 35(5): e21487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33811705

RESUMO

Chondrosarcoma is a cartilage-forming bone tumor, well known for intrinsic resistance to chemotherapy and radiotherapy. We have designed a targeted chondrosarcoma gene therapy using a bacteriophage (phage) particle to deliver therapeutic genes. Phage has no tropism for mammalian cells, allowing engineered phage to be targeted to specific cell surface receptors in cancer. We modified the phage capsid to display the RGD4C ligand on the pIII minor coat proteins to specifically bind to αvß3 or αvß5 integrin receptors. The endosomal escape peptide, H5WYG, was also displayed on recombinant pVIII major coat proteins to enhance gene delivery. Finally, a human tumor necrosis factor alpha (TNFα) therapeutic transgene expression cassette was incorporated into the phage genome. First, we found that human chondrosarcoma cells (SW1353) have high expression of αvß3, αvß5 integrin receptors, and both TNFα receptors. Targeted particle encoding a luciferase reporter gene efficiently and selectively mediated gene delivery to these cells. When SW1353 cells were treated with the targeted particle encoding a TNFα transgene, significant cell killing was evident and was associated with high expression of TNFα and apoptosis-related genes. In vivo, mice with established human chondrosarcoma showed suppression of tumors upon repetitive intravenous administrations of the targeted phage. These data show that our phage-based particle is a promising, selective, and efficient tool for targeted chondrosarcoma therapy.


Assuntos
Bacteriófagos/genética , Neoplasias Ósseas/terapia , Condrossarcoma/terapia , Técnicas de Transferência de Genes , Terapia Genética , Terapia por Fagos/métodos , Fator de Necrose Tumoral alfa/genética , Adulto , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proliferação de Células , Condrossarcoma/genética , Condrossarcoma/patologia , Vetores Genéticos/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Brain Res Bull ; 172: 190-202, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33894297

RESUMO

Neuroinflammation-mediated microglial reactivity is a major process, which explains the increased risk of Alzheimer's disease (AD) development in patients with Type 2 diabetes mellitus (T2DM). Advanced glycation end products (AGEs), formed by hyperglycemic condition in diabetes, is characterized as an intermediary of brain injury with diabetes through induction of microglial reactivity. Here, we explored the effect of AGEs on microglial reactivity using BV2 as a model. The NF-κB, p38 and JNK pathways were found to be important mechanism in AGEs-induced BV2 microglial reactivity. NF-κB inhibitor (BAY-11-7082), p38 inhibitor (SB203580) and JNK inhibitor (SP600125) exhibited the potential inhibition of AGEs-induced NO production. We also found that the sesamin, a major lignan found in sesame seed oils, exerts an anti-inflammatory effect under AGEs-induced microglial reactivity via suppressing the phosphorylation of NF-κB, p38 and JNK pathways. Moreover, sesamin also ameliorated AGEs-induced-receptor for advanced glycation end products (RAGE) expression. Taken together, sesamin may be a promising phytochemical compound to delay inflammatory progress by AGEs microglia function. Similarly, inhibition of AGEs-induced microglial reactivity might be potential therapeutic targets of neuroinflammation-based mechanisms in T2DM link progressive AD.

7.
Sci Rep ; 11(1): 1895, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479339

RESUMO

Formation of advanced glycation end products (AGEs), which are associated with diabetes mellitus, contributes to prominent features of osteoarthritis, i.e., inflammation-mediated destruction of articular cartilage. Among the phytochemicals which play a role in anti-inflammatory effects, anthocyanins have also been demonstrated to have anti-diabetic properties. Purple corn is a source of three major anthocyanins: cyanidin-3-O-glucoside, pelargonidin-3-O-glucoside and peonidin-3-O-glucoside. Purple corn anthocyanins have been demonstrated to be involved in the reduction of diabetes-associated inflammation, suggesting that they may have a beneficial effect on diabetes-mediated inflammation of cartilage. This investigation of the chondroprotective effects of purple corn extract on cartilage degradation found a reduction in glycosaminoglycans released from AGEs induced cartilage explants, corresponding with diminishing of uronic acid loss of the cartilage matrix. Investigation of the molecular mechanisms in human articular chondrocytes showed the anti-inflammatory effect of purple corn anthocyanins and the metabolite, protocatechuic acid (PCA) on AGEs induced human articular chondrocytes via inactivation of the NFκb and MAPK signaling pathways. This finding suggests that purple corn anthocyanins and PCA may help ameliorate AGEs mediated inflammation and diabetes-mediated cartilage degradation.


Assuntos
Antocianinas/farmacologia , Complicações do Diabetes/tratamento farmacológico , Produtos Finais de Glicação Avançada/genética , Inflamação/tratamento farmacológico , Antocianinas/química , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Linhagem Celular , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Glucosídeos/química , Glucosídeos/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Glicosaminoglicanos/genética , Humanos , Hidroxibenzoatos/toxicidade , Inflamação/complicações , Inflamação/genética , Inflamação/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/genética , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/patologia , Zea mays/química
8.
Heliyon ; 6(9): e04844, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995593

RESUMO

Human amniotic fluid mesenchymal stem cells (hAF-MSCs) have been shown to be effective in the treatment of many diseases. Platelet lysate (PL) contains multiple growth and differentiation factors; therefore, it can be used as a differentiation inducer. In this study, we attempted to evaluate the efficiency of human platelet lysate (hPL) on cell viability and the effects on cardiomyogenic differentiation of hAF-MSCs. When treating the cells with hPL, the result showed an increase in cell viability. Expressions of cardiomyogenic specific genes, including GATA4, cTnT, Cx43 and Nkx2.5, were higher in the combined treatment groups of 5-azacytidine (5-aza) and hPL than the expressions of cardiomyogenic specific genes in the control group and in the 5-aza treatment group. In terms of the results of immunofluorescence and immunoenzymatic staining, the highest expressions of cardiomyogenic specific proteins were revealed in combined treatment groups. It can be summarized that hPL may be an effective supporting cardiomyogenic supplementary factor for cardiomyogenic differentiation in hAF-MSCs.

9.
Heliyon ; 6(9): e04873, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995597

RESUMO

To differentiate stem cells into endothelial cells, vascular endothelia growth factors (VEGF) serve as the major signal for stimulating the cells. However, there are other cytokines or growth factors associated with endothelial cell development and differentiation. Human platelet lysate (hPL) has been a promising reagent in cell-based therapy since it is considered as a source of bioactive molecules and growth factors. The aim of this study was to investigate the in vitro differentiation of human amniotic fluid mesenchymal stem cells (hAF-MSCs) into endothelial-like cells under hPL together with VEGF or endothelial cell growth medium 2 (EGM-2), a commercially induced medium. In this study, hAF-MSCs were isolated from human amniotic fluid cells (hAFCs) using the direct adherence method. The cells expressed CD44, CD73, CD90, and HLA-ABC at high levels and expressed Oct-4 (octamer-binding transcription factor 4) at low levels. The cells were negative for CD31, CD34, CD45, CD105 and HLA-DR. This study found that hAF-MSCs induced with hPL and VEGF had the ability to differentiate into endothelial-like cells by presenting endothelial specific markers (vWF, VEGFR2 and eNOS), forming a network-like structure on Matrigel, and producing nitric oxide (NO). This outcome was similar to those of experiments involving EGM-2 induced cells. The present findings indicate that hPL + VEGF can induce hAF-MSCs to express endothelial cell characteristics. Our findings represent an important step forward in the development of a clinically compliant process for the production of endothelial cell-derived hAF-MSCs, and their subsequent testing in future clinical trials.

10.
Materials (Basel) ; 13(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756370

RESUMO

The full-thickness articular cartilage defect (FTAC) is an abnormally severe grade of articular cartilage (AC) injury. An osteochondral autograft transfer (OAT) is the recommended treatment, but the increasing morbidity rate from osteochondral plug harvesting is a limitation. Thus, the 3D-printed bilayer's bioactive-biomaterials scaffold is of major interest. Polylactic acid (PLA) and polycaprolactone (PCL) were blended with hydroxyapatite (HA) for the 3D-printed bone layer of the bilayer's bioactive-biomaterials scaffold (B-BBBS). Meanwhile, the blended PLA/PCL filament was 3D printed and combined with a chitosan (CS)/silk firoin (SF) using a lyophilization technique to fabricate the AC layer of the bilayer's bioactive-biomaterials scaffold (AC-BBBS). Material characterization and mechanical and biological tests were performed. The fabrication process consists of combining the 3D-printed structure (AC-BBBS and B-BBBS) and a lyophilized porous AC-BBBS. The morphology and printing abilities were investigated, and biological tests were performed. Finite element analysis (FEA) was performed to predict the maximum load that the bilayer's bioactive-biomaterials scaffold (BBBS) could carry. The presence of HA and CS/SF in the PLA/PCL structure increased cell proliferation. The FEA predicted the load carrying capacity to be up to 663.2 N. All tests indicated that it is possible for BBBS to be used in tissue engineering for AC and bone regeneration in FTAC treatment.

11.
Int Immunopharmacol ; 86: 106759, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32663768

RESUMO

Programmed death ligand 1 (PD-L1) is overexpressed in some metastatic breast cancer subtypes, specifically triple-negative breast cancer (TNBC). This feature can assist in the eradication of anti-tumor immunity, thereby enhancing the survival of the tumor. This study aims to explore how sesamin affects PD-L1 expression in breast cancer cells and its related molecular mechanisms. We found high levels of expression of PD-L1 in both mRNA and protein levels in the TNBC cell line, MDA-MB231, but not in the luminal type-breast cancer cell line, MCF-7. We then demonstrated the tumor suppressive effect of sesamin, which induced the inhibition of cell proliferation in MDA-MB231 cells. Additionally, sesamin triggered PD-L1 downregulation (both mRNA and protein) through the inhibition of AKT, NF-κB and JAK/Stat signaling in MDA-MB231 cells. Moreover, the migration ability of MDA-MB231 cells was effectively diminished by sesamin via inhibition of the activation of MMP-9 and MMP-2. In summary, this study demonstrated that sesamin suppresses MDA-MB231 breast cancer cells' proliferation and migration; and decreases the expression of PD-L1 via the downregulation of AKT, NF-κB, and JAK/Stat signaling. Therefore, sesamin may be an effective alternative and novel therapeutic option for immunotherapy in breast cancer cells with high PD-L1 expression.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Dioxóis/farmacologia , Lignanas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Proliferação de Células , Feminino , Humanos , Janus Quinases/metabolismo , Células MCF-7 , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Regulação para Cima
12.
Materials (Basel) ; 13(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231063

RESUMO

The biomaterials polylactic acid (PLA), polycaprolactone (PCL), and hydroxyapatite (HA) were selected to fabricate composite filaments for 3D printing fused filament fabrication (FFF), which was used to fabricate a composite biomaterial for an interlocking nail for canine diaphyseal fractures instead of metal bioinert materials. Bioactive materials were used to increase biological activities and provide a high possibility for bone regeneration to eliminate the limitations of interlocking nails. HA was added to PLA and PCL granules in three ratios according to the percentage of HA: 0%, 5%, and 15% (PLA/PCL, PLA/PCL/5HA, and PLA/PCL/15HA, respectively), before the filaments were extruded. The test specimens were 3D-printed from the extruded composite filaments using an FFF printer. Then, a group of test specimens was coated by silk fibroin (SF) using the lyophilization technique to increase their biological properties. Mechanical, biological, and chemical characterizations were performed to investigate the properties of the composite biomaterials. The glass transition and melting temperatures of the copolymer were not influenced by the presence of HA in the PLA/PCL filaments. Meanwhile, the presence of HA in the PLA/PCL/15HA group resulted in the highest compressive strength (82.72 ± 1.76 MPa) and the lowest tensile strength (52.05 ± 2.44 MPa). HA provided higher bone cell proliferation, and higher values were observed in the SF coating group. Therefore, FFF 3D-printed filaments using composite materials with bioactive materials have a high potential for use in fabricating an interlocking nail for canine diaphyseal fractures.

13.
Artigo em Inglês | MEDLINE | ID: mdl-32308720

RESUMO

The promotion of neurogenesis can be a promising strategy to improve and restore neuronal function in neurodegenerative diseases. Nerve growth factor (NGF) plays a key role in neurite outgrowth and synaptic formation during brain repair stage. Nowadays, there are several studies on the developing methods to enhance the endogenous NGF activity for treatment and restore the neuronal function. In this study, the potentiating effect of sesamin, a major lignan in sesame seeds (Sesamum indicum) and oil, on NGF-induced neurogenesis and its involved mechanisms were firstly reported. Sesamin effectively enhanced the PC12 neuron-like cell differentiation and neurite length under insufficient conditions of NGF. The neuronal markers including synaptophysin and growth-associated protein-43 along with the synaptic connections were significantly increased in combination treatment between sesamin and NGF. Moreover, sesamin also increased the level of phospho-ERK1/2 and SIRT1 protein, an important regulatory protein of the neurogenesis process. The neurogenesis was blocked by the specific SIRT1 inhibitor, JGB1741, suggesting that the neuritogenic effect of sesamin was associated with SIRT1 protein modulation. Taken together, the potentiating effect of sesamin on NGF-induced neurogenesis in this finding could be used for alternative treatment in neurodegenerative diseases, including Alzheimer's disease.

14.
J Neuroimmunol ; 341: 577164, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32007785

RESUMO

SIRT1 exhibits inhibitory effects on microglial activation-induced neurodegeneration. Regulating SIRT1 may become a novel approach for curing neurodegenerative diseases. Protocatechuic acid (PA), a phenolic acid, has anti-neuroinflammatory effects. The effect of PA on SIRT1 in activated microglia remains unknown. Here, we examined whether PA has anti-inflammatory effects against microglial activation-induced neuronal cell death via regulating SIRT1 in microglia. We found that PA inhibited the release of inflammatory mediators in LPS-activated BV2 microglia via the SIRT1/NF-κB pathway and thereby attenuated microglial activation-induced PC12 cell apoptosis. This suggests that SIRT1 mediates the anti-neuroinflammatory effects of PA to ameliorate microglial activation-induced neuron death.


Assuntos
Anti-Inflamatórios/farmacologia , Hidroxibenzoatos/farmacologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Microglia/ultraestrutura , NF-kappa B/fisiologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Óxido Nítrico/metabolismo , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/fisiologia
15.
Molecules ; 25(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936263

RESUMO

Programmed death ligand 1 (PD-L1) is overexpressed in the most aggressive breast cancer subtype, triple-negative breast cancer (TNBC), assisting the eradication of antitumor immunity, and thereby enhancing the survival of the tumor. This study explored how hesperidin affects PD-L1 expression, and thereby cancer progression in breast cancer cells. We found that MDA-MB231, the triple-negative breast adenocarcinoma cancer cell line, (high aggressiveness) has higher expression, in both mRNA and protein, of PD-L1 than that of the other breast cancer cell line, MCF-7 (low aggressiveness). Hesperidin inhibited cell proliferation in MDA-MB231 cells. Additionally, high expression of PD-L1 (both mRNA and protein) in aggressive cancer cells was strongly inhibited by hesperidin through inhibition of Akt and NF-κB signaling. Moreover, hesperidin treatment, by inhibiting activation of matrix metalloproteinases such as MMP-9 and MMP-2, suppressed the metastatic phenotype and cell migration in the PD-L1 high-expressing MDA-MB231 cells. In summary, hesperidin inhibits breast cancer cell growth through the inhibition of the expression of PD-L1 via downregulation of Akt and NF-κB signaling in TNBC. Moreover, hesperidin significantly suppresses cell migration of MDA-MB231 cells. Our findings reveal fresh insights into the anticancer effects of hesperidin which might have potential clinical implications.


Assuntos
Antígeno B7-H1/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Hesperidina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Hesperidina/química , Humanos , Metaloproteinases da Matriz/metabolismo , Modelos Biológicos , NF-kappa B/metabolismo , Invasividade Neoplásica , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Neurotox Res ; 37(1): 111-125, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31485933

RESUMO

Neuroinflammation is a major factor in the pathogenesis of various neurodegenerative diseases. Microglia are resident macrophages that act as key mediators of inflammation in the brain. In response to inflammatory stimuli including lipopolysaccharide (LPS), microglial activation occurs immediately. Overproduction of inflammatory mediators released by activated microglia contributes to neuron damage in neurodegenerative disease. Therefore, identification of a compound that has anti-inflammatory activities and inhibits microglial activation may be an alternative therapeutic approach for the treatment of neurodegenerative diseases. Cyanidin-3-O-glucoside (C3G), a type of anthocyanin, possesses powerful anti-inflammatory activities. In this study, the anti-inflammatory effects of C3G were investigated in LPS-stimulated BV2 microglia. The results indicate that pretreatment with C3G significantly suppresses microglial activation and the production of neurotoxic mediators including nitric oxide (NO), prostaglandin E2 (PGE2), and pro-inflammatory cytokines such as interleukin-1ß (IL-1ß) and interleukin-6 (IL-6) in LPS-activated BV2 cells. Moreover, C3G downregulates the gene expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines via the suppression of NF-κB and p38 MAPK signaling pathways. Furthermore, a co-culture system to determine the indirect neuroprotective effects of C3G was used. Results demonstrated that conditioned medium (CM) from LPS-stimulated BV2 cells can promote the apoptosis of differentiated pheochromocytoma (PC12) cells through the activation of caspase-3, while C3G pretreatment in BV2 microglia can protect differentiated PC12 cells from microglial activation-induced apoptosis. Therefore, C3G may be a potential therapeutic agent for the treatment and prevention of neurodegenerative diseases associated with microglial activation.


Assuntos
Antocianinas/farmacologia , Apoptose/efeitos dos fármacos , Glucosídeos/farmacologia , Microglia/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ciclo-Oxigenase 2/biossíntese , Dinoprostona/metabolismo , Regulação para Baixo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Heliyon ; 5(7): e02018, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360783

RESUMO

The aim of this study was to evaluate the efficiency of ascorbic acid (AA) on cell viability, cytotoxicity and the effects on cardiomyogenic differentiation of the human amniotic fluid mesenchymal stem cells (hAF-MSCs). The results of methylthiazole tetrazolium (MTT) assay and cell apoptosis assay indicated that after 24, 48 and 72 h of treatment, AA had no effect on cells viability and cytotoxicity. After treating the hAF-MSCs with 5-azacytidine (5-aza) and a combination of AA and 5-aza, the alamar blue cells proliferation assay showed the normal growth characteristic similar to control group. Especially, the morphological changes were observed between day 0 and day 21, and it was revealed that the hAF-MSCs exhibited myotube-like morphology after 7 days of cell culturing. Moreover, the treatment with a combination of AA and 5-aza was able to up-regulate the cardiomyogenic specific gene levels, which are known to play an important role in cardiomyogenesis. This was specifically notable with the results of immunofluorescence and immunoenzymatic staining in the AA combined with 5-aza treatment group, the highest expression of cardiomyogenic specific proteins was revealed including for GATA4, cTnT, Cx43 and Nkx2.5. It could be concluded that AA may be a good alternative cardiomyogenic inducing factor for hAF-MSCs and may open new insights into future biomedical applications for a clinically treatment.

18.
Mol Med Rep ; 19(6): 5123-5132, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059024

RESUMO

Human amniotic fluid (hAF) mesenchymal stem cells (MSCs) are commonly cultured in medium containing FBS. However, there are concerns about using animal serum in therapeutic applications due to the potential for immunogenic reactions and the risk of transmission of pathogens. For safety reasons, human platelet lysate (hPL) has been suggested as a replacement for FBS because it appears to be a natural source of growth factors. In this present study, it was investigated whether FBS could be substituted with hPL in hAF­MSCs culture without affecting their properties. Pooled hPL was generated by the freeze­thaw method. The concentration of hPL was selected after evaluation by MTT assay. The hAF­MSCs were cultured in FBS­ or hPL­supplemented conditions and shared a fibroblast­like morphology. Cell proliferation assays showed that the growth characteristic of hAF­MSCs cultured in 10% hPL­supplemented media was similar to those cultured in 10% FBS­supplemented media. The expression of MSC markers did not differ between the cells cultured in the different conditions. The endothelial differentiation potential was also investigated. Reverse transcription­quantitative (RT­q)PCR revealed that induced cells supplemented with hPL showed an increase level of endothelial specific gene expression compared to the FBS­supplemented cells. Immunofluorescence analysis showed specific protein localization in both induced cell groups. Additionally, induced cells supplemented with hPL had the potential to form networks on Matrigel. This present study indicated that hPL could be used to culture and enhance the endothelial differentiation potential of hAF­MSCs.


Assuntos
Líquido Amniótico/citologia , Plaquetas/metabolismo , Diferenciação Celular , Meios de Cultura/química , Células-Tronco Mesenquimais/citologia , Animais , Plaquetas/química , Bovinos , Técnicas de Cultura de Células/métodos , Proliferação de Células , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Soro/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/metabolismo
19.
Biomed Pharmacother ; 112: 108610, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797145

RESUMO

Osteoarthritis (OA) is a common degenerative joint disease, which is closely related to cartilage degradation. Anthocyanins, a natural flavonoid pigments, exhibit strong antioxidant and anti-inflammatory properties. However, the effect of anthocyanin on inflammatory response in OA has not been investigated. Our results showed that cyanidin-3-O-glucoside (C3G) and peonidin-3-O-glucoside (P3G), the main anthocyanins found in three Thai purple rice cultivars, attenuated the inhibition of porcine cartilage degradation in an experimental model. The effects of three Thai purple rice extracts were related to their high concentration of anthocyanins. Moreover, protocatechuic acid (PA), the main metabolite of anthocyanin, has chondroprotective potential by reducing glycosaminoglycans and collagen breakdown in IL-1ß/OSM-induced porcine cartilage explants in long-term condition. The induction of matrix metalloproteinases (MMPs) caused by IL-1ß-stimulated human chondrocytes was also attenuated by C3G, P3G, and their metabolites. Furthermore, C3G, P3G, and their metabolites pretreatment significantly inhibited IκBα degradation, the level of p-p65, and ERK/MAPK pathway. Additionally, PA pretreatment enhanced the phosphorylation of JNK in IL-1ß-stimulated human chondrocytes. These findings indicated that anthocyanin in Thai purple rice exhibited anti-inflammatory effects in IL-1ß-stimulated human chondrocytes by inhibiting NF-κB and ERK/MAPK signaling pathway.


Assuntos
Antocianinas/farmacologia , Condrócitos/metabolismo , Interleucina-1beta/toxicidade , Sistema de Sinalização das MAP Quinases/fisiologia , Metaloproteinases da Matriz/biossíntese , NF-kappa B/metabolismo , Oryza , Animais , Antocianinas/isolamento & purificação , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Humanos , Interleucina-1beta/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinases da Matriz/genética , Suínos
20.
Acta Histochem ; 121(1): 72-83, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30401477

RESUMO

Mesenchymal stem cells (MSCs), which possess remarkable capabilities, are found in amniotic fluid (AF). The findings of several studies have shown the potential benefits of these cells in applications of regenerative medicine. In clinical applications, an over-period of time is required in a preparation process that makes cell collection become more necessary. Herein, the aim of this study was to preserve and characterize the cell's properties after cell cryopreservation into an appropriate cryogenic medium. The results illustrated that the highest hAF-MSCs viability was found when the cells were conserved in a solution of 5% DMSO + 10% FBS in AF. However, no statistical differences were identified in a chromosomal aberration of the post-thawed cells when compared to the non-frozen cells. These cells could also maintain their MSC features through the ability to express cell prolific quality, illustrating the typical MSC markers and immune privilege properties of CD44, CD73, CD90 and HLA-ABC. Additionally, post-thawed cells were able to differentiate into chondrogenic lineage by exhibiting chondrogenic related genes (SOX9, AGC, COL2A1) and proteins (transcription factor SOX9 protein (SOX9), cartilage oligomeric matrix protein (COMP) and aggrecan core protein (AGC)), as well as to present sGAGs accumulation. Interestingly, the use of a transmission electron microscope (TEM) uncovered the enrichment of the rough endoplasmic reticulum (rER) that coincided with euchromatin and the prominent nucleolus in the chondrogenic-induced cells that are normally found in the cells of natural cartilage. All in all, this study manifested that AF can be a major consideration and applied for use as a co-mixture of cryogenic medium.


Assuntos
Líquido Amniótico/química , Criopreservação , Células-Tronco Mesenquimais/química , Proliferação de Células , Sobrevivência Celular , Expressão Gênica , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...