Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Adv Pharmacol Sci ; 2016: 4621039, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27051418


We investigate the pharmacokinetics of two different cephalexin formulations administered to llamas by the intravenous (IV), intramuscular (IM), and subcutaneous (SC) routes, the minimum inhibitory concentration (MIC) of cephalexin against some Escherichia coli and staphylococci isolated from llamas, and we apply the PK/PD modelling approach, so that effective dosage recommendations for this species could be made. Six llamas received immediate (10 mg/kg, IV, IM, and SC) and sustained (8 mg/kg IM, SC) release cephalexin. Pharmacokinetic parameters were calculated by noncompartmental approach. Immediate release SC administration produced a significantly longer elimination half-life as compared with the IV and IM administration (1.3 ± 0.2 versus 0.6 ± 0.1 and 0.6 ± 0.1 h, resp.) and higher mean absorption time as compared with the IM administration (1.7 ± 0.5 versus 0.6 ± 0.4 h). Absolute bioavailability was in the range of 72-89% for both formulations and routes of administration. Cephalexin MIC90 values against staphylococci and E. coli were 1.0 and 8.0 µg/mL, respectively. Our results show that the immediate release formulation (10 mg/kg) would be effective for treating staphylococcal infections administered every 8 h (IM) or 12 h (SC), whereas the sustained release formulation (8 mg/kg) would require the IM or SC administration every 12 or 24 h, respectively.

Vet Med Int ; 2014: 789353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25431741


This study was conducted in order to characterize the pharmacokinetics of orally administered cephalexin to healthy adult and aged dogs, using a population pharmacokinetic approach. Two hundred and eighty-six cephalexin plasma concentrations obtained from previous pharmacokinetic studies were used. Sex, age, pharmaceutical formulation, and breed were evaluated as covariates. A one-compartment model with an absorption lag-time (Tlag) best described the data. The final model included age (adult; aged) on apparent volume of distribution (Vd/F), apparent elimination rate (ke/F), and Tlag; sex (female; male) on ke/F, and breed (Beagle; mixed-breed) on Vd/F. Addition of the covariates to the model explained 78% of the interindividal variability (IIV) in Vd/F, 36% in ke/F, and 24% in Tlag, respectively. Formulation did not affect the variability of any of the pharmacokinetic parameters. Tlag was longer, whereas Vd/F and ke/F were lower in aged compared to adult animals; in female aged dogs ke/F was lower than in male aged dogs; however, the differences were of low magnitude. Different disposition of cephalexin may be expected in aged dogs.

J Zoo Wildl Med ; 45(1): 78-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24712165


Enrofloxacin is widely used in veterinary medicine and is an important alternative to treating bacterial infections, which play an important role as causes of disease and death in captive snakes. Its extralabel use in nontraditional species has been related to its excellent pharmacokinetic and antimicrobial characteristics. This can be demonstrated by its activity against gram-negative organisms implicated in serious infectious diseases of reptile species with a rapid and concentration-dependent bactericidal effect and a large volume of distribution. Pharmacokinetic parameters for enrofloxacin were investigated in seven urutu pit vipers (Bothrops alternatus), following intramuscular injections of 10 mg/kg. The plasma concentrations of enrofloxacin and its metabolite, ciprofloxacin, were measured using high-performance liquid chromatography. Blood samples were collected from the ventral coccygeal veins at 0.5, 1, 2, 4, 8, 12, 24, 36, 48, 72, 96, 108, and 168 hr. The kinetic behavior was characterized by a relatively slow absorption (time of maximal plasma concentration = 4.50 +/- 3.45 hr) with peak plasma concentration of 4.81 +/- 1.12 microg/ml. The long half-life during the terminal elimination phase (t1/2 lambda = 27.91 +/- 7.55 hr) of enrofloxacin after intramuscular administration, calculated in the present study, could suggest that the antibiotic is eliminated relatively slowly and/or the presence of a slow absorption in urutu pit vipers. Ciprofloxacin reached a peak plasma concentration of 0.35 microg/ml at 13.45 hr, and the fraction of enrofloxacin metabolized to ciprofloxacin was 13.06%. If enrofloxacin's minimum inhibitory concentration (MIC90) values of 0.5 microg/ml were used, the ratios AUC(e+c): MIC90 (276 +/- 67 hr) and Cmax(e+c): MIC90 (10 +/- 2) reach the proposed threshold values (125 hr and 10, respectively) for optimized efficacy and minimized resistance development when treating infections caused by Pseudomonas. The administration of 10 mg/kg of enrofloxacin by the i.m. route should be considered to be a judicious choice in urutu pit vipers against infections caused by microorganisms with MIC values < or = 0.5 microg/ml. For less susceptible bacteria, a dose increase and/or an interval reduction should be evaluated.

Antibacterianos/farmacocinética , Bothrops , Ciprofloxacino/farmacocinética , Fluoroquinolonas/farmacocinética , Animais , Antibacterianos/administração & dosagem , Antibacterianos/sangue , Antibacterianos/metabolismo , Área Sob a Curva , Ciprofloxacino/administração & dosagem , Ciprofloxacino/sangue , Ciprofloxacino/metabolismo , Enrofloxacina , Fluoroquinolonas/administração & dosagem , Fluoroquinolonas/sangue , Fluoroquinolonas/metabolismo , Meia-Vida
J Avian Med Surg ; 27(3): 180-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24344508


To determine the dosage of enrofloxacin in southern crested caracaras (Caracara plancus), plasma concentrations of enrofloxacin were measured by high-performance liquid chromatography after intravenous (IV) (5 mg/kg) and intramuscular (IM) (10 mg/kg) administration. This compound presented a relatively high volume of distribution (2.09 L/kg), a total body clearance of 0.24 L/kg x h, and a long permanence as shown by an elimination half-life of 7.81 hours after IV administration and a terminal half-life of 6.58 hours after IM administration. The areas under the concentration-time curves (AUC) were 21.92 and 34.38 microg x h/mL for IM and IV administration, respectively. Enrofloxacin was rapidly absorbed after IM administration with a time to reach maximum concentration of 0.72 hours and bioavailability of 78.76%. After IM administration, the peak drug concentration (C(max)) was 3.92 microg/mL. Values of minimum inhibitory concentration (MIC), C(max), and AUC have been used to predict the clinical efficacy of a drug in treating bacterial infections, with a C(max)/MIC value of 10 and an AUC/MIC ratio of 125-250 associated with optimal bactericidal effects. By using the study data and a MIC breakpoint of 0.25 microg/mL, values of C(max)/MIC were 13.74 and 15.94 and for AUC/MIC were 90.73 and 139.63, for the IV and IM routes respectively. For the treatment of infectious diseases caused by microorganisms with MIC < or = 0.25 microg/mL, the calculated optimal dosages were 7.5 and 9.5 mg/kg q24h by the IV and IM routes, respectively. For less susceptible bacteria, a dose increase should be evaluated. To treat caracara by the IV route against microorganisms with MIC < or = 0.25 microg/mL, the dose should be higher than the 5 mg/kg used in our study, but possible side effects derived from an increase in the IV dose and efficacy in sick birds should be assessed.

Antibacterianos/farmacocinética , Aves/sangue , Fluoroquinolonas/farmacocinética , Animais , Antibacterianos/sangue , Área Sob a Curva , Campylobacter jejuni/efeitos dos fármacos , Ciprofloxacino/sangue , Ciprofloxacino/metabolismo , Ciprofloxacino/farmacocinética , Enrofloxacina , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/sangue , Meia-Vida , Testes de Sensibilidade Microbiana
Chronobiol Int ; 27(3): 549-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20524800


Ceftazidime, a third-generation cephalosporin, is widely used for the treatment of Pseudomonas aeruginosa infections. The aims of the present study were to characterize the pharmacokinetics of ceftazidime and to estimate the T > MIC against P. aeruginosa, after its intramuscular (i.m.) administration at two different dosing times (08:30 h and 20:30 h) to dogs, in order to determine whether time-of-day administration modifies ceftazidime pharmacokinetics and/or predicted clinical antipseudomonal efficacy. Six female healthy beagle dogs were administered ceftazidime pentahydrate by the intramuscular route in a single dose of 25 mg/kg at both 08:30 and 20:30 h, two weeks apart. Plasma ceftazidime concentrations were determined by microbiological assay. Pharmacokinetic parameters and time above the minimum inhibitory concentration (T > MIC) and 4xMIC for Pseudomonas aeruginosa were calculated from the disposition curve of each dog. No differences between the daytime and nighttime administrations were found for the main pharmacokinetic parameters, including C(max), t(max), t((1/2) lambda), AUC, and MRT; however, the high interindividual variability shown by these values and the small number of individuals may account for this lack of difference. Rate of absorption (k(a)) was significantly higher after the 20:30 h than 08:30 h administration. No significant differences between T > MIC were found when comparing the 08:30 h and 20:30 h administrations. Mean T > MIC values predicted a favorable bacteriostatic effect for all susceptible strains of P. aeruginosa for the 12 h dosing interval at both dosing times. Our results suggest that similar antipseudomonal activity may be expected when ceftazidime is administered at 8:30 and 20:30 h; however, as only two timepoints of drug administration were explored, we are unable to draw any conclusions for other treatment times during the 24 h.

Ceftazidima/farmacocinética , Animais , Área Sob a Curva , Ceftazidima/administração & dosagem , Ceftazidima/farmacologia , Cães , Feminino , Injeções Intramusculares , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa/efeitos dos fármacos
Chronobiol Int ; 24(1): 161-70, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17364586


Recent studies have identified a 24 h rhythm in the expression and function of PEPT1 in rats, with significantly higher levels during the nighttime than daytime. Similarly, temporal variations have been described in glomerular filtration rate and renal blood flow, both being maximal during the activity phase and minimal during the rest phase in laboratory rodents. The aim of this study was to assess the hypothesis that the absorption of the first-generation cephalosporin antibiotic cephalexin by dogs would be less and the elimination would be slower after evening (rest span) compared to morning (activity span) administration, and whether such administration-time changes could impair the medication's predicted clinical efficacy. Six (3 male, 3 female; age 4.83+/-3.12 years) healthy beagle dogs were studied. Each dog received a single dose of 25 mg/kg of cephalexin monohydrate per os at 10:00 and 22:00 h, with a two-week interval of time between the two clock-time experiments. Plasma cephalexin concentrations were determined by microbiological assay. Cephalexin peak plasma concentration was significantly reduced to almost 77% of its value after the evening compared to morning (14.52+/-2.7 vs. 18.77+/-2.8 microg/mL) administration. The elimination half-life was prolonged 1.5-fold after the 22:00 h compared to the 10:00 h administration (2.69+/-0.9 vs. 1.79+/-0.2 h). The area under the curve and time to reach peak plasma concentration did not show significant administration-time differences. The duration of time that cephalexin concentrations remained above the minimal inhibitory concentrations (MIC) for staphylococci susceptiblity (MIC=0.5 microg/mL) was>70% of each of the 12 h dosing intervals (i.e., 10:00 and 22:00 h). It can be concluded that cephalexin pharmacokinetics vary with time of day administration. The findings of this acute single-dose study require confirmation by future steady-state, multiple-dose studies. If such studies are confirmatory, no administration-time dose adjustment is required to ensure drug efficacy in dogs receiving an oral suspension of cephalexin in a dosage of 25 mg/kg at 12 h intervals.

Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Cefalexina/administração & dosagem , Cefalexina/farmacocinética , Administração Oral , Animais , Antibacterianos/sangue , Antibacterianos/farmacocinética , Cefalexina/sangue , Cefalexina/farmacologia , Fenômenos Cronobiológicos , Cães , Feminino , Masculino