Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1864(3): 129484, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31734463

RESUMO

BACKGROUND: High glutaminase (GLS;EC3.5.1.2) activity is an important pathophysiological phenomenon in tumorigenesis and metabolic disease. Insight into the metabolic consequences of high GLS activity contributes to the understanding of the pathophysiology of both oncogenic pathways and inborn errors of glutamate metabolism. Glutaminase catalyzes the conversion of glutamine into glutamate, thereby interconnecting many metabolic pathways. METHODS: We developed a HEK293-based cell-model that enables tuning of GLS activity by combining the expression of a hypermorphic GLS variant with incremental GLS inhibition. The metabolic consequences of increasing GLS activity were studied by metabolic profiling using Direct-Infusion High-Resolution Mass-Spectrometry (DI-HRMS). RESULTS AND CONCLUSIONS: Of 12,437 detected features [m/z], 109 features corresponding to endogenously relevant metabolites were significantly affected by high GLS activity. As expected, these included strongly decreased glutamine and increased glutamate levels. Additionally, increased levels of tricarboxylic acid (TCA) intermediates with a truncation of the TCA cycle at the level of citrate were detected as well as increased metabolites of transamination reactions, proline and ornithine synthesis and GABA metabolism. Levels of asparagine and nucleotide metabolites showed the same dependence on GLS activity as glutamine. Of the nucleotides, especially metabolites of the pyrimidine thymine metabolism were negatively impacted by high GLS activity, which is remarkable since their synthesis depend both on aspartate (product of glutamate) and glutamine levels. Metabolites of the glutathione synthesizing γ-glutamyl-cycle were either decreased or unaffected. GENERAL SIGNIFICANCE: By providing a metabolic fingerprint of increasing GLS activity, this study shows the large impact of high glutaminase activity on the cellular metabolome.

2.
Brain ; 142(11): 3382-3397, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31637422

RESUMO

CTP:phosphoethanolamine cytidylyltransferase (ET), encoded by PCYT2, is the rate-limiting enzyme for phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. Phosphatidylethanolamine is one of the most abundant membrane lipids and is particularly enriched in the brain. We identified five individuals with biallelic PCYT2 variants clinically characterized by global developmental delay with regression, spastic para- or tetraparesis, epilepsy and progressive cerebral and cerebellar atrophy. Using patient fibroblasts we demonstrated that these variants are hypomorphic, result in altered but residual ET protein levels and concomitant reduced enzyme activity without affecting mRNA levels. The significantly better survival of hypomorphic CRISPR-Cas9 generated pcyt2 zebrafish knockout compared to a complete knockout, in conjunction with previously described data on the Pcyt2 mouse model, indicates that complete loss of ET function may be incompatible with life in vertebrates. Lipidomic analysis revealed profound lipid abnormalities in patient fibroblasts impacting both neutral etherlipid and etherphospholipid metabolism. Plasma lipidomics studies also identified changes in etherlipids that have the potential to be used as biomarkers for ET deficiency. In conclusion, our data establish PCYT2 as a disease gene for a new complex hereditary spastic paraplegia and confirm that etherlipid homeostasis is important for the development and function of the brain.

3.
J Inherit Metab Dis ; 42(3): 414-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30761551

RESUMO

Most infants with very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) identified by newborn screening (NBS) are asymptomatic at the time of diagnosis and remain asymptomatic. If this outcome is due to prompt diagnosis and initiation of therapy, or because of identification of individuals with biochemical abnormalities who will never develop symptoms, is unclear. Therefore, a 10-year longitudinal national cohort study of genetically confirmed VLCADD patients born before and after introduction of NBS was conducted. Main outcome measures were clinical outcome parameters, acyl-CoA dehydrogenase very long chain gene analysis, VLCAD activity, and overall capacity of long-chain fatty acid oxidation (LC-FAO flux) in lymphocytes and cultured skin fibroblasts. Median VLCAD activity in lymphocytes of 54 patients, 21 diagnosed pre-NBS and 33 by NBS was, respectively, 5.4% (95% confidence interval [CI]: 4.0-8.3) and 12.6% (95% CI: 10.7-17.7; P < 0.001) of the reference mean. The median LC-FAO flux was 33.2% (95% CI: 22.8-48.3) and 41% (95% CI: 40.8-68; P < 0.05) of the control mean, respectively. Clinical characteristics in 23 pre-NBS and 37 NBS patients revealed hypoglycemic events in 12 vs 2 patients, cardiomyopathy in 5 vs 4 patients and myopathy in 14 vs 3 patients. All patients with LC-FAO flux <10% developed symptoms. Of the patients with LC-FAO flux >10% 7 out of 12 diagnosed pre-NBS vs none by NBS experienced hypoglycemic events. NBS has a clear beneficial effect on the prevention of hypoglycemic events in patients with some residual enzyme activity, but does not prevent hypoglycemia nor cardiac complications in patients with very low residual enzyme activity. The effect of NBS on prevalence and prevention of myopathy-related complications remains unclear.

4.
Metabolites ; 9(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641898

RESUMO

In metabolic diagnostics, there is an emerging need for a comprehensive test to acquire a complete view of metabolite status. Here, we describe a non-quantitative direct-infusion high-resolution mass spectrometry (DI-HRMS) based metabolomics method and evaluate the method for both dried blood spots (DBS) and plasma. 110 DBS of 42 patients harboring 23 different inborn errors of metabolism (IEM) and 86 plasma samples of 38 patients harboring 21 different IEM were analyzed using DI-HRMS. A peak calling pipeline developed in R programming language provided Z-scores for ~1875 mass peaks corresponding to ~3835 metabolite annotations (including isomers) per sample. Based on metabolite Z-scores, patients were assigned a 'most probable diagnosis' by an investigator blinded for the known diagnoses of the patients. Based on DBS sample analysis, 37/42 of the patients, corresponding to 22/23 IEM, could be correctly assigned a 'most probable diagnosis'. Plasma sample analysis, resulted in a correct 'most probable diagnosis' in 32/38 of the patients, corresponding to 19/21 IEM. The added clinical value of the method was illustrated by a case wherein DI-HRMS metabolomics aided interpretation of a variant of unknown significance (VUS) identified by whole-exome sequencing. In summary, non-quantitative DI-HRMS metabolomics in DBS and plasma is a very consistent, high-throughput and nonselective method for investigating the metabolome in genetic disease.

5.
Am J Ophthalmol ; 198: 97-110, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312576

RESUMO

PURPOSE: Human leukocyte antigen-B27 (HLA-B27)-positive acute anterior uveitis (AAU) has a higher recurrence rate and shows more anterior chamber cell infiltration compared with HLA-B27-negative patients, suggesting distinct etiologies of these clinically overlapping conditions. To advance our understanding of the biology of AAU, we characterized the metabolic profile of aqueous humor (AqH) of patients with HLA-B27-associated AAU (B27-AAU) and noninfectious idiopathic AAU (idiopathic AAU). DESIGN: Experimental laboratory study. METHODS: AqH samples from 2 independent cohorts totaling 30 patients with B27-AAU, 16 patients with idiopathic AAU, and 20 patients with cataracts underwent 2 individual rounds of direct infusion mass spectrometry. Features predicted by direct infusion mass spectrometry that facilitated maximum separation between the disease groups in regression models were validated by liquid chromatography/tandem mass spectrometry-based quantification with appropriate standards. RESULTS: Partial least square-discriminant analysis revealed metabolite profiles that were able to separate patients with B27-AAU from those with iodiopathic AAU. Pathway enrichment analysis, based on metabolites on which separation of the groups in the partial least square-discriminant analysis model was based, demonstrated the involvement of branched-chain amino acid biosynthesis, ascorbate and aldarate metabolism, the tricarboxylic acid cycle, and glycolysis-diverting pathways (eg, serine biosynthesis) across all investigated cohorts. Notably, the metabolite ketoleucine was elevated in B27-AAU across all 3 runs and moderately-but robustly-correlated with anterior chamber cell count (correlation coefficient range 0.41-0.81). CONCLUSIONS: These results illustrate metabolic heterogeneity between HLA-B27-positive and HLA-B27-negative AAU, including an increase of branched-chain amino acid biosynthesis, that reflects disease activity in AAU.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Humor Aquoso/metabolismo , Biomarcadores/metabolismo , Antígeno HLA-B27/metabolismo , Cetoácidos/metabolismo , Uveíte Anterior/metabolismo , Doença Aguda , Adulto , Idoso , Ácido Ascórbico/metabolismo , Cromatografia Líquida , Ciclo do Ácido Cítrico/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em Tandem
6.
J Inherit Metab Dis ; 41(3): 479-487, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28849344

RESUMO

Peroxisomes play an important role in a variety of metabolic pathways, including the α- and ß-oxidation of fatty acids, and the biosynthesis of ether phospholipids. Single peroxisomal enzyme deficiencies (PEDs) are a group of peroxisomal disorders in which either a peroxisomal matrix enzyme or a peroxisomal membrane transporter protein is deficient. To investigate the functional consequences of specific enzyme deficiencies on the lipidome, we performed lipidomics using cultured skin fibroblasts with different defects in the ß-oxidation of very long-chain fatty acids, including ABCD1- (ALD), acyl-CoA oxidase 1 (ACOX1)-, D-bifunctional protein (DBP)-, and acyl-CoA binding domain containing protein 5 (ACBD5)-deficient cell lines. Ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry revealed characteristic changes in the phospholipid composition in fibroblasts with different fatty acid ß-oxidation defects. Remarkably, we found that ether phospholipids, including plasmalogens, were decreased. We defined specific phospholipid ratios reflecting the different enzyme defects, which can be used to discriminate the PED fibroblasts from healthy control cells.


Assuntos
Fibroblastos/química , Fibroblastos/metabolismo , Lipídeos/análise , Metabolômica/métodos , Transtornos Peroxissômicos/diagnóstico , Estudos de Casos e Controles , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Espectrometria de Massas/métodos , Oxirredução , Transtornos Peroxissômicos/metabolismo , Peroxissomos/metabolismo , Pele/citologia , Pele/metabolismo
7.
J Inherit Metab Dis ; 41(3): 489-498, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209936

RESUMO

Peroxisomes are ubiquitous cell organelles that play an important role in lipid metabolism. Accordingly, peroxisomal disorders, including the peroxisome biogenesis disorders and peroxisomal single-enzyme deficiencies, are associated with aberrant lipid metabolism. Lipidomics is an emerging tool for diagnosis, disease-monitoring, identifying lipid biomarkers, and studying the underlying pathophysiology in disorders of lipid metabolism. In this study, we demonstrate the potential of lipidomics for the diagnosis of peroxisomal disorders using plasma samples from patients with different types of peroxisomal disorders. We show that the changes in the plasma profiles of phospholipids, di- and triglycerides, and cholesterol esters correspond with the characteristic metabolite abnormalities that are currently used in the metabolic screening for peroxisomal disorders. The lipidomics approach, however, gives a much more detailed overview of the metabolic changes that occur in the lipidome. Furthermore, we identified novel unique lipid species for specific peroxisomal diseases that are candidate biomarkers. The results presented in this paper show the power of lipidomics approaches to enable the specific diagnosis of different peroxisomal disorders.


Assuntos
Lipídeos/sangue , Metabolômica/métodos , Transtornos Peroxissômicos/diagnóstico , Biomarcadores/análise , Biomarcadores/sangue , Análise Química do Sangue/métodos , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Transtornos Peroxissômicos/sangue , Peroxissomos/metabolismo
8.
J Inherit Metab Dis ; 40(6): 883-891, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801717

RESUMO

Pyridoxal 5'-phosphate (PLP), the metabolically active form of vitamin B6, plays an essential role in brain metabolism as a cofactor in numerous enzyme reactions. PLP deficiency in brain, either genetic or acquired, results in severe drug-resistant seizures that respond to vitamin B6 supplementation. The pathogenesis of vitamin B6 deficiency is largely unknown. To shed more light on the metabolic consequences of vitamin B6 deficiency in brain, we performed untargeted metabolomics in vitamin B6-deprived Neuro-2a cells. Significant alterations were observed in a range of metabolites. The most surprising observation was a decrease of serine and glycine, two amino acids that are known to be elevated in the plasma of vitamin B6 deficient patients. To investigate the cause of the low concentrations of serine and glycine, a metabolic flux analysis on serine biosynthesis was performed. The metabolic flux results showed that the de novo synthesis of serine was significantly reduced in vitamin B6-deprived cells. In addition, formation of glycine and 5-methyltetrahydrofolate was decreased. Thus, vitamin B6 is essential for serine de novo biosynthesis in neuronal cells, and serine de novo synthesis is critical to maintain intracellular serine and glycine. These findings suggest that serine and glycine concentrations in brain may be deficient in patients with vitamin B6 responsive epilepsy. The low intracellular 5-mTHF concentrations observed in vitro may explain the favourable but so far unexplained response of some patients with pyridoxine-dependent epilepsy to folinic acid supplementation.


Assuntos
Serina/metabolismo , Vitamina B 6/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Glicina/sangue , Glicina/metabolismo , Humanos , Fosfato de Piridoxal/sangue , Fosfato de Piridoxal/metabolismo , Piridoxina/sangue , Serina/sangue , Vitamina B 6/sangue , Deficiência de Vitamina B 6/sangue , Deficiência de Vitamina B 6/metabolismo
9.
Anal Chim Acta ; 979: 45-50, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28599708

RESUMO

Diagnosis and treatment of inborn errors of metabolism (IEM) require the analysis of a variety of metabolites. These compounds are usually quantified by targeted platforms. High resolution mass spectrometry (HRMS) has the potential to detect hundreds to thousands of metabolites simultaneously. A chip-based nanoelectrospray source (chip-based nanoESI) enables the direct infusion of biological samples. Major advantages of this system include high sample throughput, no sample carryover, and low sample consumption. The combination, chip-based nanoESI-HRMS enables untargeted metabolomics of biological samples but its potential for quantification of metabolites has not been reported. We investigated whether chip-based nanoESI-HRMS is suitable for quantification of metabolites in dried blood spots (DBS). After addition of internal standards, metabolites were extracted with methanol. Aliquots of each extract were analysed by chip-based nanoESI-HRMS operating in both positive and negative mode with an m/z window of 70-600 and a resolution of 140,000. Total run time was 4.5 min per sample and a full report could be generated within 40 min. Concentrations of all 21 investigated diagnostic metabolites in DBS as quantified by chip-based nanoESI-HRMS correlated well with those obtained by targeted liquid chromatography-tandem mass spectrometry. We conclude that chip-based nanoESI-HRMS is suitable for quantification.


Assuntos
Teste em Amostras de Sangue Seco , Espectrometria de Massas , Metabolômica , Cromatografia Líquida , Humanos , Metanol , Padrões de Referência , Espectrometria de Massas em Tandem
10.
Sci Rep ; 7(1): 2408, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546536

RESUMO

Abnormal nutrient metabolism is a hallmark of aging, and the underlying genetic and nutritional framework is rapidly being uncovered, particularly using C. elegans as a model. However, the direct metabolic consequences of perturbations in life history of C. elegans remain to be clarified. Based on recent advances in the metabolomics field, we optimized and validated a sensitive mass spectrometry (MS) platform for identification of major metabolite classes in worms and applied it to study age and diet related changes. Using this platform that allowed detection of over 600 metabolites in a sample of 2500 worms, we observed marked changes in fatty acids, amino acids and phospholipids during worm life history, which were independent from the germ-line. Worms underwent a striking shift in lipid metabolism after early adulthood that was at least partly controlled by the metabolic regulator AAK-2/AMPK. Most amino acids peaked during development, except aspartic acid and glycine, which accumulated in aged worms. Dietary intervention also influenced worm metabolite profiles and the regulation was highly specific depending on the metabolite class. Altogether, these MS-based methods are powerful tools to perform worm metabolomics for aging and metabolism-oriented studies.


Assuntos
Caenorhabditis elegans/metabolismo , Traços de História de Vida , Metaboloma , Metabolômica , Fatores Etários , Aminoácidos/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatografia Líquida de Alta Pressão , Biologia Computacional/métodos , Dieta , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Massas , Metabolômica/métodos , Mutação , Fosforilação , Reprodutibilidade dos Testes
11.
J Lipid Res ; 57(8): 1447-54, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27284103

RESUMO

Peroxisomes are subcellular organelles involved in various metabolic processes, including fatty acid and phospholipid homeostasis. The Zellweger spectrum disorders (ZSDs) represent a group of diseases caused by a defect in the biogenesis of peroxisomes. Accordingly, cells from ZSD patients are expected to have an altered composition of fatty acids and phospholipids. Using an LC/MS-based lipidomics approach, we show that the phospholipid composition is characteristically altered in cultured primary skin fibroblasts from ZSD patients when compared with healthy controls. We observed a marked overall increase of phospholipid species containing very long-chain fatty acids, and a decrease of phospholipid species with shorter fatty acid species in ZSD patient fibroblasts. In addition, we detected a distinct phosphatidylcholine profile in ZSD patients with a severe and mild phenotype when compared with control cells. Based on our data, we present a set of specific phospholipid ratios for fibroblasts that clearly discriminate between mild and severe ZSD patients, and those from healthy controls. Our findings will aid in the diagnosis and prognosis of ZSD patients, including an increasing number of mild patients in whom hardly any abnormalities are observed in biochemical parameters commonly used for diagnosis.


Assuntos
Fibroblastos/metabolismo , Fosfolipídeos/metabolismo , Síndrome de Zellweger/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Metabolismo dos Lipídeos , Metabolômica , Síndrome de Zellweger/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA