Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34575989

RESUMO

Sorghum is one of the staple crops for millions of people in Sub-Saharan Africa (SSA) and South Asia (SA). The future climate in these sorghum production regions is likely to have unexpected short or long episodes of drought and/or high temperature (HT), which can cause significant yield losses. Therefore, to achieve food and nutritional security, drought and HT stress tolerance ability in sorghum must be genetically improved. Drought tolerance mechanism, stay green, and grain yield under stress has been widely studied. However, novel traits associated with drought (restricted transpiration and root architecture) need to be explored and utilized in breeding. In sorghum, knowledge on the traits associated with HT tolerance is limited. Heat shock transcription factors, dehydrins, and genes associated with hormones such as auxin, ethylene, and abscisic acid and compatible solutes are involved in drought stress modulation. In contrast, our understanding of HT tolerance at the omic level is limited and needs attention. Breeding programs have exploited limited traits with narrow genetic and genomic resources to develop drought or heat tolerant lines. Reproductive stages of sorghum are relatively more sensitive to stress compared to vegetative stages. Therefore, breeding should incorporate appropriate pre-flowering and post-flowering tolerance in a broad genetic base population and in heterotic hybrid breeding pipelines. Currently, more than 240 QTLs are reported for drought tolerance-associated traits in sorghum prospecting discovery of trait markers. Identifying traits and better understanding of physiological and genetic mechanisms and quantification of genetic variability for these traits may enhance HT tolerance. Drought and HT tolerance can be improved by better understanding mechanisms associated with tolerance and screening large germplasm collections to identify tolerant lines and incorporation of those traits into elite breeding lines. Systems approaches help in identifying the best donors of tolerance to be incorporated in the SSA and SA sorghum breeding programs. Integrated breeding with use of high-throughput precision phenomics and genomics can deliver a range of drought and HT tolerant genotypes that can improve yield and resilience of sorghum under drought and HT stresses.


Assuntos
Resistência à Doença/genética , Resposta ao Choque Térmico/genética , Melhoramento Vegetal , Característica Quantitativa Herdável , Sorghum , Desidratação/genética , Sorghum/genética , Sorghum/crescimento & desenvolvimento
2.
Sci Rep ; 11(1): 15711, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344979

RESUMO

Efficient, more accurate reporting of maize (Zea mays L.) phenology, crop condition, and progress is crucial for agronomists and policy makers. Integration of satellite imagery with machine learning models has shown great potential to improve crop classification and facilitate in-season phenological reports. However, crop phenology classification precision must be substantially improved to transform data into actionable management decisions for farmers and agronomists. An integrated approach utilizing ground truth field data for maize crop phenology (2013-2018 seasons), satellite imagery (Landsat 8), and weather data was explored with the following objectives: (i) model training and validation-identify the best combination of spectral bands, vegetation indices (VIs), weather parameters, geolocation, and ground truth data, resulting in a model with the highest accuracy across years at each season segment (step one) and (ii) model testing-post-selection model performance evaluation for each phenology class with unseen data (hold-out cross-validation) (step two). The best model performance for classifying maize phenology was documented when VIs (NDVI, EVI, GCVI, NDWI, GVMI) and vapor pressure deficit (VPD) were used as input variables. This study supports the integration of field ground truth, satellite imagery, and weather data to classify maize crop phenology, thereby facilitating foundational decision making and agricultural interventions for the different members of the agricultural chain.

3.
Plant Cell Rep ; 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34223931

RESUMO

Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.

4.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281242

RESUMO

Cultivars with efficient root systems play a major role in enhancing resource use efficiency, particularly water absorption, and thus in drought tolerance. In this study, a diverse wheat association panel of 136 wheat accessions including mini core subset was genotyped using Axiom 35k Breeders' Array to identify genomic regions associated with seedling stage root architecture and shoot traits using multi-locus genome-wide association studies (ML-GWAS). The association panel revealed a wide variation of 1.5- to 50-fold and were grouped into six clusters based on 15 traits. Six different ML-GWAS models revealed 456 significant quantitative trait nucleotides (QTNs) for various traits with phenotypic variance in the range of 0.12-38.60%. Of these, 87 QTNs were repeatedly detected by two or more models and were considered reliable genomic regions for the respective traits. Among these QTNs, eleven were associated with average diameter and nine each for second order lateral root number (SOLRN), root volume (RV) and root length density (RLD). A total of eleven genomic regions were pleiotropic and each controlled two or three traits. Some important candidate genes such as Formin homology 1, Ubiquitin-like domain superfamily and ATP-dependent 6-phosphofructokinase were identified from the associated genomic regions. The genomic regions/genes identified in this study could potentially be targeted for improving root traits and drought tolerance in wheat.


Assuntos
Estudo de Associação Genômica Ampla , Osmorregulação/genética , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Triticum/genética , Secas , Variação Genética , Poliploidia , Plântula/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
5.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072403

RESUMO

Gradually increasing temperatures at global and local scales are causing heat stress for cool and summer-season food legumes, such as lentil (Lens culinaris Medik.), which is highly susceptible to heat stress, especially during its reproductive stages of development. Hence, suitable strategies are needed to develop heat tolerance in this legume. In the present study, we tested the effectiveness of heat priming (HPr; 6 h at 35 °C) the lentil seeds and a foliar treatment of γ-aminobutyric acid (GABA; 1 mM; applied twice at different times), singly or in combination (HPr+GABA), under heat stress (32/20 °C) in two heat-tolerant (HT; IG2507, IG3263) and two heat-sensitive (HS; IG2821, IG2849) genotypes to mitigate heat stress. The three treatments significantly reduced heat injury to leaves and flowers, particularly when applied in combination, including leaf damage assessed as membrane injury, cellular oxidizing ability, leaf water status, and stomatal conductance. The combined HPr+GABA treatment significantly improved the photosynthetic function, measured as photosynthetic efficiency, chlorophyll concentration, and sucrose synthesis; and significantly reduced the oxidative damage, which was associated with a marked up-regulation in the activities of enzymatic antioxidants. The combined treatment also facilitated the synthesis of osmolytes, such as proline and glycine betaine, by upregulating the expression of their biosynthesizing enzymes (pyrroline-5-carboxylate synthase; betaine aldehyde dehydrogenase) under heat stress. The HPr+GABA treatment caused a considerable enhancement in endogenous levels of GABA in leaves, more so in the two heat-sensitive genotypes. The reproductive function, measured as germination and viability of pollen grains, receptivity of stigma, and viability of ovules, was significantly improved with combined treatment, resulting in enhanced pod number (21-23% in HT and 35-38% in HS genotypes, compared to heat stress alone) and seed yield per plant (22-24% in HT and 37-40% in HS genotypes, in comparison to heat stress alone). The combined treatment (HPr+GABA) was more effective and pronounced in heat-sensitive than heat-tolerant genotypes for all the traits tested. This study offers a potential solution for tackling and protecting heat stress injury in lentil plants.


Assuntos
Aclimatação , Resposta ao Choque Térmico , Temperatura Alta , Lens (Planta)/fisiologia , Característica Quantitativa Herdável , Sementes/fisiologia , Ácido gama-Aminobutírico/metabolismo , Lens (Planta)/efeitos dos fármacos , Oxirredução , Estresse Oxidativo , Fotossíntese , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Reprodução , Sementes/efeitos dos fármacos , Ácido gama-Aminobutírico/farmacologia
6.
JMIR Public Health Surveill ; 7(6): e24251, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081593

RESUMO

BACKGROUND: COVID-19 transmission rates in South Asia initially were under control when governments implemented health policies aimed at controlling the pandemic such as quarantines, travel bans, and border, business, and school closures. Governments have since relaxed public health restrictions, which resulted in significant outbreaks, shifting the global epicenter of COVID-19 to India. Ongoing systematic public health surveillance of the COVID-19 pandemic is needed to inform disease prevention policy to re-establish control over the pandemic within South Asia. OBJECTIVE: This study aimed to inform public health leaders about the state of the COVID-19 pandemic, how South Asia displays differences within and among countries and other global regions, and where immediate action is needed to control the outbreaks. METHODS: We extracted COVID-19 data spanning 62 days from public health registries and calculated traditional and enhanced surveillance metrics. We use an empirical difference equation to measure the daily number of cases in South Asia as a function of the prior number of cases, the level of testing, and weekly shifts in variables with a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Traditional surveillance metrics indicate that South Asian countries have an alarming outbreak, with India leading the region with 310,310 new daily cases in accordance with the 7-day moving average. Enhanced surveillance indicates that while Pakistan and Bangladesh still have a high daily number of new COVID-19 cases (n=4819 and n=3878, respectively), their speed of new infections declined from April 12-25, 2021, from 2.28 to 2.18 and 3.15 to 2.35 daily new infections per 100,000 population, respectively, which suggests that their outbreaks are decreasing and that these countries are headed in the right direction. In contrast, India's speed of new infections per 100,000 population increased by 52% during the same period from 14.79 to 22.49 new cases per day per 100,000 population, which constitutes an increased outbreak. CONCLUSIONS: Relaxation of public health restrictions and the spread of novel variants fueled the second wave of the COVID-19 pandemic in South Asia. Public health surveillance indicates that shifts in policy and the spread of new variants correlate with a drastic expansion in the pandemic, requiring immediate action to mitigate the spread of COVID-19. Surveillance is needed to inform leaders whether policies help control the pandemic.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Surtos de Doenças/estatística & dados numéricos , Política de Saúde , Saúde Pública/estatística & dados numéricos , Adulto , Idoso , Idoso de 80 Anos ou mais , Ásia/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/legislação & jurisprudência , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Vigilância em Saúde Pública , SARS-CoV-2
7.
Plants (Basel) ; 10(3)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673537

RESUMO

Heat stress is one of the production constraints for tomato (Solanum lycopersicum L.) due to unfavorable, above optimum temperatures. This research was undertaken to evaluate growth and fruit yield of tomato genotypes under three contrasting growing conditions (i.e., optimal temperature in field-, high temperature in field- and high temperature in greenhouse conditions) to determine their relative heat tolerance. Eleven tomato genotypes, including two local check varieties, were evaluated, and data on growth and yield were measured and analyzed. The interactions between the genotypes and growing conditions for all yield traits were significant. In general, the performance of tomato under optimal temperature field conditions was better than under high temperature field- and greenhouse conditions. Genotypes CLN1621L, CLN2026D, CLN3212C, and KK1 had consistently greater fruit yield per plant in all growing conditions. Although the local genotype, Neang Tamm, had lower yield under optimal conditions, it performed moderately well under high temperature field- and high temperature greenhouse conditions, and yield decrease under high temperature condition was minimal. Genotype CLN1621L had stable fruit setting compared to other genotypes under high temperature conditions. Since fruit setting and yield are important traits for heat tolerance, genotypes CLN1621L and Neang Tamm are potential candidates for breeding programs focused on improved yield and heat stress tolerance.

8.
Plant Cell Environ ; 44(7): 2049-2065, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576033

RESUMO

Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night-temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT-induced alterations in physiological mechanisms including carbon balance, source-sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain-filling duration, post-flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high-throughput field-based phenotyping facilities for improved assessment of large-diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.

9.
Agric Syst ; 190: 103108, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33612920

RESUMO

CONTEXT: The global COVID-19 pandemic has produced a variety of unanticipated shocks to farming and socio-economic systems around the world. In case of Senegal, the country was already facing number of challenges at the inception of the pandemic, including high rates of poverty, prevalence of food insecurity, combined with other biophysical and socioeconomic challenges faced generally in Sub-Saharan Africa. OBJECTIVE: To understand farmer perceptions of the potential impacts of COVID-19 on agricultural systems and social well-being of smallholder farmers in Senegal. Particular attention was given to potential vulnerabilities and resilience in the targeted farming systems. METHODS: A survey was developed to better understand smallholder farmer perceptions regarding the anticipated impacts of COVID-19 on their agriculture practices and social well-being. The survey was administered (between June 5 and June 20) with smallholder farmers (n = 872) in 14 regions covering all agroecological zones. Variables of interest included perceptions of potential impact on farming systems, agricultural productivity, communities, economics, markets, labor, gendered division of labor, food security, and community well-being. RESULTS AND CONCLUSIONS: Across the three farming systems examined (cropping, livestock, and horticulture) significant majorities expressed concerns related to access to inputs, ability to plant (cropping, horticulture), reduction of yields (cropping, horticulture), ability to feed livestock, ability to sell livestock, and the ability to hire labor (horticulture). The majority of respondents also expressed concern that COVID-19 would make it more difficult to get enough food on a regular basis for their household (82.5%); that the markets where they purchase food will either be closed or significantly disrupted (79.5%); that the price of food would increase (73.5%); and the market where they sell their produce/livestock will be either closed or significantly disrupted (73.2%). SIGNIFICANCE: Anticipated impacts of COVID-19 on agriculture will be felt on both the biophysical aspects such as production and access to inputs and socioeconomic aspects such as access to labor, markets, or rapid shifts in demand. Results support the need to use farming systems approach to gather perceived and actual impacts of COVID-19 and warrants a more in-depth examination of agronomic and biophysical issues as well as the impact on the livelihoods and social well-being of families at community and household levels. Further examination will help identify the characteristics that strengthen smallholder farming systems resilience to adjust to anticipated and unanticipated shocks, such as COVID-19, to decrease the negative impacts and increase the rate of recovery.

10.
Planta ; 253(2): 48, 2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33484360

RESUMO

MAIN CONCLUSION: This study confirms a high level of metabolic resistance to the herbicide chlorsulfuron, inherited by a single dominant gene in a sorghum genotype (GL-1). Chlorsulfuron, an acetolactate synthase (ALS)-inhibitor, effectively controls post-emergence grass and broadleaf weeds but is not registered for use in sorghum because of crop injury. The objectives of this study were to characterize the inheritance and mechanism of chlorsulfuron resistance in the sorghum genotype GL-1. Chlorsulfuron dose-response experiments were conducted using GL-1 along with BTx623 (susceptible check), and Pioneer 84G62 (commercial sorghum hybrid). The F1 and F2 progeny were generated by crossing GL-1 with BTx623. To assess if the target site alterations bestow resistance, the ALS gene, the molecular target of chlorsulfuron, was sequenced from GL-1. The role of cytochrome P450 (CYP) in metabolizing chlorsulfuron, using malathion, a CYP-inhibitor was tested. The chlorsulfuron dose-response assay indicated that GL-1 and F1 progeny were ~ 20-fold more resistant to chlorsulfuron relative to BTx623. The F2 progenies segregated 3:1 (resistance: susceptibility) suggesting that chlorsulfuron resistance in GL-1 is a single dominant trait. No mutations in the ALS gene were detected in the GL-1; however, a significant reduction in biomass accumulation was found in plants pre-treated with malathion indicating that metabolism of chlorsulfuron contributes to resistance in GL-1. Also, GL-1 is highly susceptible to other herbicides (e.g., mesotrione and tembotrione) compared to Pioneer 84G62, suggesting the existence of a negative cross-resistance in GL-1. Overall, these results confirm a high level of metabolic resistance to chlorsulfuron inherited by a single dominant gene in GL-1 sorghum. These results have potential for developing chlorsulfuron-tolerant sorghum hybrids, with the ability to improve post-emergence weed control.


Assuntos
Resistência a Herbicidas , Sorghum , Sulfonamidas , Triazinas , Acetolactato Sintase/genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Sorghum/efeitos dos fármacos , Sorghum/genética , Sulfonamidas/toxicidade , Triazinas/toxicidade
11.
Front Plant Sci ; 11: 596581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362828

RESUMO

Postemergence grass weed control continues to be a major challenge in grain sorghum [Sorghum bicolor (L.) Moench], primarily due to lack of herbicide options registered for use in this crop. The development of herbicide-resistant sorghum technology to facilitate broad-spectrum postemergence weed control can be an economical and viable solution. The 4-hydroxyphenylpyruvate dioxygenase-inhibitor herbicides (e.g., mesotrione or tembotrione) can control a broad spectrum of weeds including grasses, which, however, are not registered for postemergence application in sorghum due to crop injury. In this study, we identified two tembotrione-resistant sorghum genotypes (G-200, G-350) and one susceptible genotype (S-1) by screening 317 sorghum lines from a sorghum association panel (SAP). These tembotrione-resistant and tembotrione-susceptible genotypes were evaluated in a tembotrione dose-response [0, 5.75, 11.5, 23, 46, 92 (label recommended dose), 184, 368, and 736 g ai ha-1] assay. Compared with S-1, the genotypes G-200 and G-350 exhibited 10- and seven fold more resistance to tembotrione, respectively. To understand the inheritance of tembotrione-resistant trait, crosses were performed using S-1 and G-200 or G-350 to generate F1 and F2 progeny. The F1 and F2 progeny were assessed for their response to tembotrione treatment. Genetic analyses of the F1 and F2 progeny demonstrated that the tembotrione resistance in G-200 and G-350 is a partially dominant polygenic trait. Furthermore, cytochrome P450 (CYP)-inhibitor assay using malathion and piperonyl butoxide suggested possible CYP-mediated metabolism of tembotrione in G-200 and G-350. Genotype-by-sequencing based quantitative trait loci (QTL) mapping revealed QTLs associated with tembotrione resistance in G-200 and G-350 genotypes. Overall, the genotypes G-200 and G-350 confer a high level of metabolic resistance to tembotrione and controlled by a polygenic trait. There is an enormous potential to introgress the tembotrione resistance into breeding lines to develop agronomically desirable sorghum hybrids.

12.
Front Plant Sci ; 11: 587264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193540

RESUMO

Rising global temperatures due to climate change are affecting crop performance in several regions of the world. High temperatures affect plants at various organizational levels, primarily accelerating phenology to limit biomass production and shortening reproductive phase to curtail flower and fruit numbers, thus resulting in severe yield losses. Besides, heat stress also disrupts normal growth, development, cellular metabolism, and gene expression, which alters shoot and root structures, branching patterns, leaf surface and orientation, and anatomical, structural, and functional aspects of leaves and flowers. The reproductive growth stage is crucial in plants' life cycle, and susceptible to high temperatures, as reproductive processes are negatively impacted thus reducing crop yield. Genetic variation exists among genotypes of various crops to resist impacts of heat stress. Several screening studies have successfully phenotyped large populations of various crops to distinguish heat-tolerant and heat-sensitive genotypes using various traits, related to shoots (including leaves), flowers, fruits (pods, spikes, spikelets), and seeds (or grains), which have led to direct release of heat-tolerant cultivars in some cases (such as chickpea). In the present review, we discuss examples of contrasting genotypes for heat tolerance in different crops, involving many traits related to thermotolerance in leaves (membrane thermostability, photosynthetic efficiency, chlorophyll content, chlorophyll fluorescence, stomatal activity), flowers (pollen viability, pollen germination, fertilization, ovule viability), roots (architecture), biomolecules (antioxidants, osmolytes, phytohormones, heat-shock proteins, other stress proteins), and "omics" (phenomics, transcriptomics, genomics) approaches. The traits linked to heat tolerance can be introgressed into high yielding but heat-sensitive genotypes of crops to enhance their thermotolerance. Involving these traits will be useful for screening contrasting genotypes and would pave the way for characterizing the underlying molecular mechanisms, which could be valuable for engineering plants with enhanced thermotolerance. Wherever possible, we discussed breeding and biotechnological approaches for using these traits to develop heat-tolerant genotypes of various food crops.

13.
Heliyon ; 6(10): e05100, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33117897

RESUMO

Humic substances (HS) and humic acids (HA) are proven to enhance nutrient uptake and growth in plants. Foliar application of urea combined with HS and HA offers an alternative strategy to increase nitrogen use efficiency (NUE). The objective of this study was to understand the effects of foliar application of HA and HS along with urea on NUE and response of different biometric, biochemical and physiological traits of sugarcane with respect to cultivar, mode of foliar application, geographic location and intervals of foliar application. To study this, two different independent Experiments were conducted in green house facilities at two different agro-climatic zones (USA and Brazil) using two different predominant varieties, modes and intervals of foliar applications. The three different foliar applications used in this study were (1) urea (U), (2) mixture of urea and HS (U+HS) and (3) HA (U+HA). In both Experiments, 15N (nitrogen isotope) recovery or NUE was higher in U+HS followed by U+HA. However, magnitude of NUE changed according to the differences in two Experiments. Results showed that foliar application of U+HS and U+HA was rapidly absorbed and stored in the form of protein and starch. Also induced changes in photosynthesis, intrinsic water use efficiency, protein, total soluble sugars and starch signifying a synergistic effect of U+HS and U+HA on carbon and nitrogen metabolism. These results showed promising use of HS and HA with urea to improve NUE in sugarcane compared to using the urea alone. Simultaneously, mode, quantity, and interval of foliar application should be standardized based on the geographic locations and varieties to optimize the NUE.

14.
Front Plant Sci ; 11: 1262, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973831

RESUMO

Effect of diurnal temperature amplitude on carbon tradeoff (photosynthesis vs. respiration) and growth are not well documented in C4 crops, especially under changing temperatures of light (daytime) and dark (nighttime) phases in 24 h of a day. Fluctuations in daytime and nighttime temperatures due to climate change narrows diurnal temperature amplitude which can alter circadian rhythms in plant, thus influence the ability of plants to cope with temperature changes and cause contradictory responses in carbon tradeoff, particularly in night respiration during dark phase, and growth. Sorghum [Sorghum bicolor (L.) Moench] is a key C4 cereal crop grown in high temperature challenging agro-climatic regions. Hence, it is important to understand its response to diurnal temperature amplitude. This is the first systematic investigation using controlled environmental facility to monitor the response of sorghum to different diurnal temperature amplitudes with same mean temperature. Two sorghum hybrids (DK 53 and DK 28E) were grown under optimum (27°C) and high (35°C) mean temperatures with three different diurnal temperature amplitudes (2, 10, and 18°C) accomplished by modulating daytime and nighttime temperatures [optimum daytime and nighttime temperatures (ODNT): 28/26, 32/22, and 36/18°C and high daytime and nighttime temperatures (HDNT): 36/34, 40/30, and 44/26°C]. After exposure to different temperature conditions, total soluble sugars, starch, total leaf area and biomass were reduced, while night respiration and specific leaf area were increased with narrowing of diurnal temperature amplitude (18 to 2°C) of HDNT followed by ODNT. However, there was no influence on photosynthesis across different ODNT and HDNT. Contradiction in response of foliar gas exchange and growth suggests higher contribution of night respiration for maintenance rather than growth with narrowing of diurnal temperature amplitude of ODNT and HDNT. Results imply that diurnal temperature amplitude has immense impact on the carbon tradeoff and growth, regardless of hybrid variation. Hence, diurnal temperature amplitude and night respiration should be considered while quantifying response and screening for high temperature tolerance in sorghum genotypes and comprehensive understanding of dark phase mechanisms which are coupled with stress response can further strengthen screening procedures.

15.
Antioxidants (Basel) ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466087

RESUMO

Cytochrome P450s (CYPs) are the largest enzyme family involved in NADPH- and/or O2-dependent hydroxylation reactions across all the domains of life. In plants and animals, CYPs play a central role in the detoxification of xenobiotics. In addition to this function, CYPs act as versatile catalysts and play a crucial role in the biosynthesis of secondary metabolites, antioxidants, and phytohormones in higher plants. The molecular and biochemical processes catalyzed by CYPs have been well characterized, however, the relationship between the biochemical process catalyzed by CYPs and its effect on several plant functions was not well established. The advent of next-generation sequencing opened new avenues to unravel the involvement of CYPs in several plant functions such as plant stress response. The expression of several CYP genes are regulated in response to environmental stresses, and they also play a prominent role in the crosstalk between abiotic and biotic stress responses. CYPs have an enormous potential to be used as a candidate for engineering crop species resilient to biotic and abiotic stresses. The objective of this review is to summarize the latest research on the role of CYPs in plant stress response.

16.
BMC Plant Biol ; 20(1): 185, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345227

RESUMO

BACKGROUND: Understanding root system morphology in bread wheat is critical for identifying root traits to breed cultivars with improved resource uptake and better adaptation to adverse environments. Variability in root morphological traits at early vegetative stages was examined among 184 bread wheat genotypes originating from 37 countries grown in a semi-hydroponic phenotyping system. RESULTS: At the onset of tillering (Z2.1, 35 days after transplanting), plants had up to 42 cm in shoot height and 158 cm long in root depth. Phenotypic variation existed for both shoot and root traits, with a maximal 4.3-fold difference in total root length and 5-fold difference in root dry mass among the 184 genotypes. Of the 41 measured traits, 24 root traits and four shoot traits had larger coefficients of variation (CV ≥ 0.25). Strong positive correlations were identified for some key root traits (i.e., root mass, root length, and these parameters at different depths) and shoot traits (i.e., shoot mass and tiller number) (P ≤ 0.05). The selected 25 global traits (at whole-plant level) contributed to one of the five principal components (eigenvalues> 1) capturing 83.0% of the total variability across genotypes. Agglomerative hierarchical clustering analysis separated the 184 genotypes into four (at a rescaled distance of 15) or seven (at a rescaled distance of 10) major groups based on the same set of root traits. Strong relationships between performance traits (dry mass) with several functional traits such as specific root length, root length intensity and root tissue density suggest their linkage to plant growth and fitness strategies. CONCLUSIONS: Large phenotypic variability in root system morphology in wheat genotypes was observed at the tillering stage using established semi-hydroponic phenotyping techniques. Phenotypic differences in and trait correlations among some interesting root traits may be considered for breeding wheat cultivars with efficient water acquisition and better adaptation to abiotic stress.


Assuntos
Raízes de Plantas/anatomia & histologia , Triticum/anatomia & histologia , Variação Biológica da População , Pão , Raízes de Plantas/genética , Triticum/genética
17.
J Exp Bot ; 71(2): 632-641, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31586430

RESUMO

Soil fertility provides the foundation for nutritious food production and resilient and sustainable livelihoods. A comprehensive survey and summit meeting were conducted with the aims of understanding barriers to enhancing soil fertility in sub-Saharan Africa and providing evidence-based recommendations. The focus regions were West Africa, East Africa, the Great Lakes region, and Ethiopia. Overall recommendations were developed with four emerging themes: (1) strengthening inorganic fertilizer-based systems, (2) access to and use of quality organic inputs, (3) capacity building along the entire knowledge-transfer value chain, and (4) strengthening farming systems research and development across biophysical and socio-economic factors. The evidence-based process and methodology for prioritizing these recommendations makes these findings useful for setting out action plans for future investments and strategies. Access to inorganic fertilizer, its use, and related implementation issues were prominent considerations; nevertheless, biophysical and socio-economic barriers and solutions were identified as equally important to building soil fertility and natural resources. Soil management initiatives should focus on providing holistic solutions covering both biophysical and socio-economic aspects along the entire value chain of actors and creating an enabling environment for adoption. A broader view of soil fertility improvement using all available options including both inorganic and organic sources of nutrients and farming system approaches are highly recommended.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/análise , Solo/química , África ao Sul do Saara , Produtos Agrícolas/efeitos dos fármacos
18.
J Exp Bot ; 71(2): 569-594, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328236

RESUMO

Among various abiotic stresses, heat stress is one of the most damaging, threatening plant productivity and survival all over the world. Warmer temperatures due to climatic anomalies above optimum growing temperatures have detrimental impacts on crop yield potential as well as plant distribution patterns. Heat stress affects overall plant metabolism in terms of physiology, biochemistry, and gene expression. Membrane damage, protein degradation, enzyme inactivation, and the accumulation of reactive oxygen species are some of the harmful effects of heat stress that cause injury to various cellular compartments. Although plants are equipped with various defense strategies to counteract these adversities, their defensive means are not sufficient to defend against the ever-rising temperatures. Hence, substantial yield losses have been observed in all crop species under heat stress. Here, we describe the involvement of various plant growth-regulators (PGRs) (hormones, polyamines, osmoprotectants, antioxidants, and other signaling molecules) in thermotolerance, through diverse cellular mechanisms that protect cells under heat stress. Several studies involving the exogenous application of PGRs to heat-stressed plants have demonstrated their role in imparting tolerance, suggesting the strong potential of these molecules in improving the performance of food crops grown under high temperature.


Assuntos
Produtos Agrícolas/fisiologia , Resposta ao Choque Térmico , Reguladores de Crescimento de Plantas/fisiologia , Termotolerância , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Temperatura Alta
19.
J Exp Bot ; 71(2): 480-489, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31374116

RESUMO

Addressing the complex issues related to climate change requires multiple innovative approaches to identify research priorities involving multidisciplinary research teams. Participatory approaches with a variety of perspectives were used to gain insights into critical issues such as defining and understanding sustainable intensification, climate smart agriculture, and soil fertility prioritization in sub-Saharan Africa. This analysis drew on the foundation principles of participatory research and fundamental facilitation skills, while grounded in scientific knowledge and understanding of these complex issues. This approach essentially incorporates the relevant principles of participatory learning and action, primarily designed for development projects, with a new set of players within the research and policy domain. The results of three case studies that utilized participatory techniques with a set of multidisciplinary research teams are presented. The case studies were: (i) Feed the Future Sustainable Intensification Innovation Lab (SIIL) proposal development grounded in country-led and national priorities in Bangladesh, Tanzania, and Cambodia; (ii) climate smart agriculture and sustainable intensification assessment and priority setting in Rwanda; and (iii) soil fertility prioritization in sub-Saharan Africa. We discuss how the future directions of such initiatives were shaped for improved outcomes.


Assuntos
Agricultura/métodos , Mudança Climática , Solo/química , África ao Sul do Saara , Bangladesh , Camboja , Pesquisa
20.
Int J Biometeorol ; 64(1): 47-57, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31468175

RESUMO

In this study, the response of 6-month-old cocoa (Theobroma cacao L.) seedlings to elevated CO2 concentration [ECO2], elevated temperature [ET], and their interaction with water deficit stress was studied in an open top chamber (OTC). Each OTC was maintained at chamber control (400 ppm CO2), [ECO2] 550 ppm, [ECO2] 700 ppm, ET 3 °C above chamber control, and ET 3 °C + [ECO2] 550 ppm. Inside each OTC, a set of plants received moisture at 100% FC, while the other set was at 50% FC, which was the water deficit stress treatment. Increasing the CO2 concentration in cocoa increased photosynthesis (Pn) by 27%, which resulted in high biomass accumulation, thus improving the whole plant water use efficiency (WUE). The impact of high temperature (Tmax), around 39 °C in ET treatment against 36 °C in chamber control, is quite severe on Pn, leaf Ψ, and biomass accumulation. Similarly, water deficit at 50% FC resulted in the leaf Ψ reducing to - 14.06 bars at which Pn, leaf area, and biomass were significantly reduced. [ECO2] could ameliorate the negative effect of high temperature and water deficit stress to certain extent. However, the relative response of cocoa seedlings to [ECO2] in improving Pn, leaf Ψ, biomass, and WUE was greater under 50% FC compared to plants at 100% FC suggested additional advantage of [ECO2] to cocoa under water limited conditions.


Assuntos
Cacau , Fotossíntese , Dióxido de Carbono , Folhas de Planta , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...