Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 126(21): 9034-9040, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35686222

RESUMO

Molecular motors have been intensely studied in solution, but less commonly on solid surfaces that offer fixed points of reference for their motion and allow high-resolution single-molecule imaging by scanning probe microscopy. Surface adsorption of molecules can also alter the potential energy surface and consequently preferred intramolecular conformations, but it is unknown how this affects motor molecules. Here, we show how the different conformations of motor molecules are modified by surface adsorption using a combination of scanning tunneling microscopy and density functional theory. These results demonstrate how the contact of a motor molecule with a solid can affect the energetics of the molecular conformations.

2.
Nano Lett ; 22(7): 2971-2977, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35294200

RESUMO

Conversion of free-standing graphene into pure graphane─where each C atom is sp3 bound to a hydrogen atom─has not been achieved so far, in spite of numerous experimental attempts. Here, we obtain an unprecedented level of hydrogenation (≈90% of sp3 bonds) by exposing fully free-standing nanoporous samples─constituted by a single to a few veils of smoothly rippled graphene─to atomic hydrogen in ultrahigh vacuum. Such a controlled hydrogenation of high-quality and high-specific-area samples converts the original conductive graphene into a wide gap semiconductor, with the valence band maximum (VBM) ∼ 3.5 eV below the Fermi level, as monitored by photoemission spectromicroscopy and confirmed by theoretical predictions. In fact, the calculated band structure unequivocally identifies the achievement of a stable, double-sided fully hydrogenated configuration, with gap opening and no trace of π states, in excellent agreement with the experimental results.

3.
Nanoscale ; 12(38): 19681-19688, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-32996531

RESUMO

Bottom-up approaches exploiting on-surface synthesis reactions allow atomic-scale precision in the fabrication of graphene nanoribbons (GNRs); this is essential for their technological applications since their unique electronic and optical properties are largely controlled by the specific edge structure. By means of a combined experimental-theoretical investigation of some prototype GNRs, we show here that high-resolution electron energy-loss spectroscopy (HREELS) can be successfully employed to fingerprint the details of the GNR edge structure. In particular, we demonstrate how the features of HREEL vibrational spectra - mainly dictated by edge CH out-of-plane modes - are unambiguously related to the GNR edge structure. Moreover, we single out those modes which are localized at the GNR termini and show how their relative intensity can be related to the average GNR length.

4.
Sci Rep ; 9(1): 7370, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089241

RESUMO

Polythiophenes are the most widely utilized semiconducting polymers in organic electronics, but they are scarcely exploited in photonics due to their high photo-induced absorption caused by interchain polaron pairs, which prevents the establishment of a window of net optical gain. Here we study the photophysics of poly(3-hexylthiophene) configured with different degrees of supramolecular ordering, spin-coated thin films and templated nanowires, and find marked differences in their optical properties. Transient absorption measurements evidence a partially-polarized stimulated emission band in the nanowire samples, in contrast with the photo-induced absorption band observed in spin-coated thin films. In combination with theoretical modeling, our experimental results reveal the origin of the primary photoexcitations dominating the dynamics for different supramolecular ordering, with singlet excitons in the nanostructured samples superseding the presence of polaron pairs, which are present in the disordered films. Our approach demonstrates a viable strategy to direct optical properties through structural control, and the observation of optical gain opens the possibility to the use of polythiophene nanostructures as building blocks of organic optical amplifiers and active photonic devices.

5.
J Am Chem Soc ; 140(25): 7803-7809, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29779378

RESUMO

Among organic electronic materials, graphene nanoribbons (GNRs) offer extraordinary versatility as next-generation semiconducting materials for nanoelectronics and optoelectronics due to their tunable properties, including charge-carrier mobility, optical absorption, and electronic bandgap, which are uniquely defined by their chemical structures. Although planar GNRs have been predominantly considered until now, nonplanarity can be an additional parameter to modulate their properties without changing the aromatic core. Herein, we report theoretical and experimental studies on two GNR structures with "cove"-type edges, having an identical aromatic core but with alkyl side chains at different peripheral positions. The theoretical results indicate that installment of alkyl chains at the innermost positions of the "cove"-type edges can "bend" the peripheral rings of the GNR through steric repulsion between aromatic protons and the introduced alkyl chains. This structural distortion is theoretically predicted to reduce the bandgap by up to 0.27 eV, which is corroborated by experimental comparison of thus synthesized planar and nonplanar GNRs through UV-vis-near-infrared absorption and photoluminescence excitation spectroscopy. Our results extend the possibility of engineering GNR properties, adding subtle structural distortion as a distinct and potentially highly versatile parameter.

6.
Nano Lett ; 18(1): 175-181, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29215893

RESUMO

Thanks to their highly tunable band gaps, graphene nanoribbons (GNRs) with atomically precise edges are emerging as mechanically and chemically robust candidates for nanoscale light emitting devices of modulable emission color. While their optical properties have been addressed theoretically in depth, only few experimental studies exist, limited to ensemble measurements and without any attempt to integrate them in an electronic-like circuit. Here we report on the electroluminescence of individual GNRs suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate, constituting thus a realistic optoelectronic circuit. Emission spectra of such GNR junctions reveal a bright and narrow band emission of red light, whose energy can be tuned with the bias voltage applied to the junction, but always lying below the gap of infinite GNRs. Comparison with ab initio calculations indicates that the emission involves electronic states localized at the GNR termini. Our results shed light on unpredicted optical transitions in GNRs and provide a promising route for the realization of bright, robust, and controllable graphene-based light-emitting devices.

7.
Nanoscale ; 9(46): 18326-18333, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29143040

RESUMO

The bottom-up fabrication of graphene nanoribbons (GNRs) has opened new opportunities to specifically tune their electronic and optical properties by precisely controlling their atomic structure. Here, we address excitation in GNRs with periodic structural wiggles, the so-called chevron GNRs. Based on reflectance difference and high-resolution electron energy loss spectroscopies together with ab initio simulations, we demonstrate that their excited-state properties are of excitonic nature. The spectral fingerprints corresponding to different reaction stages in their bottom-up fabrication are also unequivocally identified, allowing us to follow the exciton build-up from the starting monomer precursor to the final GNR structure.

9.
Nat Commun ; 7: 11010, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26984281

RESUMO

Graphene nanoribbons display extraordinary optical properties due to one-dimensional quantum-confinement, such as width-dependent bandgap and strong electron-hole interactions, responsible for the formation of excitons with extremely high binding energies. Here we use femtosecond transient absorption spectroscopy to explore the ultrafast optical properties of ultranarrow, structurally well-defined graphene nanoribbons as a function of the excitation fluence, and the impact of enhanced Coulomb interaction on their excited states dynamics. We show that in the high-excitation regime biexcitons are formed by nonlinear exciton-exciton annihilation, and that they radiatively recombine via stimulated emission. We obtain a biexciton binding energy of ≈ 250 meV, in very good agreement with theoretical results from quantum Monte Carlo simulations. These observations pave the way for the application of graphene nanoribbons in photonics and optoelectronics.

10.
Nano Lett ; 16(6): 3442-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-26907096

RESUMO

Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.

11.
ACS Nano ; 10(1): 1182-8, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26691058

RESUMO

Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions. We find that, irrespective of excitation photon energy, the transient absorption spectrum shows the simultaneous bleaching of all excitonic transitions and corresponding red-shifted photoinduced absorption bands. First-principle modeling of the ultrafast optical response reveals that a transient bandgap renormalization, caused by the presence of photoexcited carriers, is primarily responsible for the observed features. Our results demonstrate the strong impact of many-body effects in the transient optical response of TMDs even in the low-excitation-density regime.

12.
J Phys Chem A ; 118(33): 6507-13, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24984100

RESUMO

The electronic and optical properties of polycyclic aromatic hydrocarbons (PAHs) present a strong dependence on their size and geometry. We tackle this issue by analyzing the spectral features of two prototypical classes of PAHs, belonging to D6h and D2h symmetry point groups and related to coronene as multifunctional seed. While the size variation induces an overall red shift of the spectra and a redistribution of the oscillator strength between the main peaks, a lower molecular symmetry is responsible for the appearance of new optical features. Along with broken molecular orbital degeneracies, optical peaks split and dark states are activated in the low-energy part of the spectrum. Supported by a systematic analysis of the composition and the character of the optical transitions, our results contribute in shedding light to the mechanisms responsible for spectral modifications in the visible and near UV absorption bands of medium-size PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Anisotropia , Tamanho da Partícula , Espectrofotometria Ultravioleta , Propriedades de Superfície
13.
Nat Commun ; 5: 4253, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25001405

RESUMO

Narrow graphene nanoribbons exhibit substantial electronic bandgaps and optical properties fundamentally different from those of graphene. Unlike graphene--which shows a wavelength-independent absorbance for visible light--the electronic bandgap, and therefore the optical response, of graphene nanoribbons changes with ribbon width. Here we report on the optical properties of armchair graphene nanoribbons of width N=7 grown on metal surfaces. Reflectance difference spectroscopy in combination with ab initio calculations show that ultranarrow graphene nanoribbons have fully anisotropic optical properties dominated by excitonic effects that sensitively depend on the exact atomic structure. For N=7 armchair graphene nanoribbons, the optical response is dominated by absorption features at 2.1, 2.3 and 4.2 eV, in excellent agreement with ab initio calculations, which also reveal an absorbance of more than twice the one of graphene for linearly polarized light in the visible range of wavelengths.

14.
Phys Rev Lett ; 112(19): 198303, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24877971

RESUMO

We present a fully ab initio, nonperturbative description of the optical limiting properties of a metal-free phthalocyanine by simulating the effects of a broadband electric field of increasing intensity. The results confirm reverse saturable absorption as the leading mechanism for optical limiting phenomena in this system and reveal that a number of dipole-forbidden excitations are populated by excited-state absorption at more intense external fields. The excellent agreement with the experimental data supports our approach as a powerful tool to predict optical limiting in view of applications.


Assuntos
Indóis/química , Modelos Químicos , Isoindóis , Modelos Moleculares , Fenômenos Ópticos , Óptica e Fotônica/métodos , Teoria Quântica
15.
ACS Nano ; 8(6): 5765-73, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24830340

RESUMO

Low-temperature scanning tunneling microscopy measurements and first-principles calculations are employed to characterize edge structures observed for graphene nanoislands grown on the Co(0001) surface. Images of these nanostructures reveal straight well-ordered edges with zigzag orientation, which are characterized by a distinct peak at low bias in tunneling spectra. Density functional theory based calculations are used to discriminate between candidate edge structures. Several zigzag-oriented edge structures have lower formation energy than armchair-oriented edges. Of these, the lowest formation energy configurations are a zigzag and a Klein edge structure, each with the final carbon atom over the hollow site in the Co(0001) surface. In the absence of hydrogen, the interaction with the Co(0001) substrate plays a key role in stabilizing these edge structures and determines their local conformation and electronic properties. The calculated electronic properties for the low-energy edge structures are consistent with the measured scanning tunneling images.

16.
ACS Nano ; 6(8): 6930-5, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22853456

RESUMO

Some of the most intriguing properties of graphene are predicted for specifically designed nanostructures such as nanoribbons. Functionalities far beyond those known from extended graphene systems include electronic band gap variations related to quantum confinement and edge effects, as well as localized spin-polarized edge states for specific edge geometries. The inability to produce graphene nanostructures with the needed precision, however, has so far hampered the verification of the predicted electronic properties. Here, we report on the electronic band gap and dispersion of the occupied electronic bands of atomically precise graphene nanoribbons fabricated via on-surface synthesis. Angle-resolved photoelectron spectroscopy and scanning tunneling spectroscopy data from armchair graphene nanoribbons of width N = 7 supported on Au(111) reveal a band gap of 2.3 eV, an effective mass of 0.21 m(0) at the top of the valence band, and an energy-dependent charge carrier velocity reaching 8.2 × 10(5) m/s in the linear part of the valence band. These results are in quantitative agreement with theoretical predictions that include image charge corrections accounting for screening by the metal substrate and confirm the importance of electron-electron interactions in graphene nanoribbons.


Assuntos
Grafite/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Transporte de Elétrons , Teste de Materiais , Tamanho da Partícula
17.
Nano Lett ; 12(8): 4025-31, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22746249

RESUMO

Robust methods to tune the unique electronic properties of graphene by chemical modification are in great demand due to the potential of the two dimensional material to impact a range of device applications. Here we show that carbon and nitrogen core-level resonant X-ray spectroscopy is a sensitive probe of chemical bonding and electronic structure of chemical dopants introduced in single-sheet graphene films. In conjunction with density functional theory based calculations, we are able to obtain a detailed picture of bond types and electronic structure in graphene doped with nitrogen at the sub-percent level. We show that different N-bond types, including graphitic, pyridinic, and nitrilic, can exist in a single, dilutely N-doped graphene sheet. We show that these various bond types have profoundly different effects on the carrier concentration, indicating that control over the dopant bond type is a crucial requirement in advancing graphene electronics.

18.
J Phys Chem Lett ; 3(7): 924-9, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26286422

RESUMO

The optical excitations of elongated graphene nanoflakes of finite length are investigated theoretically through quantum chemistry semiempirical approaches. The spectra and the resulting dipole fields are analyzed, accounting in full atomistic details for quantum confinement effects, which are crucial in the nanoscale regime. We find that the optical spectra of these nanostructures are dominated at low energy by excitations with strong intensity, comprised of characteristic coherent combinations of a few single-particle transitions with comparable weight. They give rise to stationary collective oscillations of the photoexcited carrier density extending throughout the flake and to a strong dipole and field enhancement. This behavior is robust with respect to width and length variations, thus ensuring tunability in a large frequency range. The implications for nanoantennas and other nanoplasmonic applications are discussed for realistic geometries.

19.
J Phys Chem Lett ; 2(11): 1315-9, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26295427

RESUMO

We investigate the optical properties of edge-functionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.

20.
J Chem Phys ; 133(12): 124703, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20886961

RESUMO

We investigate from first principles the electronic and transport properties of zigzag graphene nanoribbons in the presence of Co adatoms. Comparing different adsorption sites across the width, we find that the Co-C coupling is rather sensitive to the local environment. While a net spin polarization appears in all cases, the spin filtering effect is significantly enhanced when the Co adatom is at the edge, where the adsorption energy is maximized and a partial suppression of edge-associated transport channels occurs. We also probe the magnetic interaction in the nonbonding regime, for Co-graphene nanoribbon (GNR) distances ranging from adsorption to π-π typical configurations. Our results indicate that Co-GNR coupling is still appreciable in an intermediate range, whereas it becomes vanishingly small in the limit of π-π distances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...